- 1 A facile cation exchange-based aqueous synthesis of highly stable and biocompatible
- 2 Ag₂S quantum dots emitting in the second near-infrared biological window
- 3

4 Rijun Gui,^{a,c,1} Jie Sun,^{a,1} Dexiu Liu,^b Yanfeng Wang^{a,*} and Hui Jin^c

5

6 ^a Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, P.R. China. E-mail:

7 wyfyikeyuan@126.com (Y. Wang); Fax: +86 531 82919963. Tel.: +86 531 67816486.

8 ^b Shuzhou Health College, Shuzhou 215009, P.R. China.

9 ° Department of Chemistry, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University,

10 Shanghai 200240, P.R. China.

11 ¹ These authors have the equivalent contribution to this work.

12

13 1. Apparatus

14 The photoluminescence (PL) lifetime studies were performed using an Edinburgh FL nF900 mode single-photon counting system equipped with a Hydrogen lamp as the excitation resource (Edinburgh Instruments, U.K.). The 15 energy diffraction X-ray (EDX) spectra and the selected area electron diffraction (SAED) images were obtained 16 with a JEOL JEM-1400 transmission electron microscope (TEM, JEOL, Japan) at an acceleration voltage of 120 17 kV. The powder X-ray diffraction (XRD) patterns were obtained with wide-angle X-ray scattering, using a D5005 18 19 X-ray powder diffractometer that equipped with graphite monochromatized Cu K α radiation ($\lambda = 1.54056$ Å) (Siemens, Germany). The inductively coupled plasma atomic emission spectroscopy (ICP-AES, Integra XL, 20 Australia) using a standard HCl/HNO₃ digestion was utilized to measure the concentrations of Cd ions. 21 22

23 **2. Results**

24 **Table S1** The exchange efficiency of Cd ions (from CdS QDs) with Ag ions.

	U	3	۲, ۲		
Samples	PL emission/nm	a [Cd] _{before} /µg mL ⁻¹	^b [Cd] _{after} /µg mL ⁻¹	° EE/%	^d RSD/%
CdS (A)	526	49.94	0.12	99.76	3.09
CdS (<i>B</i>)	554	50.85	0.06	99.88	0.52
CdS (<i>C</i>)	575	50.53	0.24	99.52	3.56
CdS (D)	589	49.87	0.17	99.66	4.16

25 ^{a, b} The concentrations of Cd ions in CdS QDs water-dispersible solution before and after cation exchange between

26 Cd and Ag ions due to the addition of AgNO₃ (the mol ratio of Ag/Cd is more than 2/1, *i.e.*, slightly excessive Ag)

27 solution. All concentrations were measured by ICP-AES, and expressed as means of six repeated measurements.

28 ° The cation exchange efficiency (EE, %) = $100 \times ([Cd]_{before} - [Cd]_{after}) / [Cd]_{before}$.

29 ^d The relative standard deviation (RSD, %) of EE was defined as $100 \times$ (relative standard) / mean.

30

31

32

33

34

1

2 Fig. S1 PL QYs of CdS QDs prepared at different time points from 10, 30 min, 1, 2, 3 to 6 h, corresponding to the

maximum emission peak wavelengths from 509, 526 (A_1), 554 (B_1), 575 (C_1), 589 (D_1) to 648 nm. The QYs were calculated by the equation: $\Phi_s = \Phi_r (I_s/I_r) (A_r/A_s) (n_s/n_r)$, where the Φ_s , I_s , A_s and n_s are QYs, emission peak area,

- 5 integrated absorption intensity and refractive indices of QDs, respectively, and the Φ_r , I_r , A_r and n_r stand for the
- 6 corresponding parameters of rhodamine 6G as a reference standard (QYs = 94% in water).
- 7

- 9 Fig. S2 The selected area electron diffraction (SAED) pattern of Ag_2S QDs (the sample D_2) prepared from CdS 10 QDs (the sample D_1) *via* cation exchange.
- 11

8

12

Fig. S3 Powder XRD patterns of the initial CdS QDs (the sample D_1) prepared in this study based on a facile aqueous synthesis, and corresponding diffraction peak positions of cubic zinc blende CdS bulk crystals (JCPDS Card No. 10-454).

2 Fig. S4 EDX spectra of (a) CdS QDs (the sample D_1) and (b) Ag₂S QDs (the sample D_2) prepared from CdS QDs 3

1

via cation exchange (or CdS QDs after the addition of Ag⁺ ions).

5

6 Fig. S5 PL decay curves and average PL lifetimes of CdS QDs (the sample D_1) and Ag₂S QDs (the sample D_2)

7 prepared from CdS QDs via cation exchange. Here, the average PL lifetime means the room temperature PL decay 8

time (*i.e.*, the exciton lifetime, $\tau_{1/e}$), at which the PL intensity has decreased to 1/e of its initial value, is used as a 9 parameter to compare the lifetime.

11

1 2 3 **Fig. S6** Quantitative flow cytometry results. ROS induced by CdS QDs (0, 10, 25, and 50 μg mL⁻¹) after 72 h treatment. Positive represents the positive control with Rosup concentration of 50 μg mL⁻¹.

4 3. NIR-II PL cell in situ imaging

5 The performance of Ag₂S QDs as NIR-II PL cell imaging was estimated as below. Briefly, a portion of L929 cell suspension (10 mL) was transferred to 200 mL of PBS (1 mM, pH 7.4), and the resulting mixture was placed into a 6 7 6-well chamber slide, storing in a temperature-controlled chamber (at 37 °C for 24 h, 1 L min⁻¹ of CO₂ gas flow). Then, Ag₂S QDs dispersed in water (50 μ g mL⁻¹) were added into the cell dishes. After incubating for 2 h at 37 °C, 8 the QDs-loaded cells were washed three times with PBS to remove free QDs absorbed or/and attached on the outer 9 10 surface of cell membrane. The cell imaging was done using a laser diode (658 nm excitation) with 80 µm diameter spot focused by a 100× objective lens. The NIR-II PL was collected by a liquid-nitrogen-cooled, 320×256 pixel, 11 12 and two-dimension lnGaAs camera with a sensitivity range from 800 to 1700 nm. The excitation light was filtered out using a 900 nm long-pass filter so that the intensity of each pixel represented light in 900~1700 nm. The NIR-II 13 PL images were taken at 300 ms of exposure time. For the bright field images, a fiber optic illuminator was used 14 for illuminating the sample in the transillumination mode, and the images were taken using the same filter at 2 ms 15 of exposure time. Fluorescence imaging of tumor cells was recorded on a FV-300 IX 71 Confocal Fluorescence 16 Microscope (CFM, Olympus). 17 To illustrate the feasibility of highly stable and biocompatible Ag₂S QDs as effective NIR-II PL emissive probes, 18

- 19 L929 cell imaging was performed in the range of 900~1700 nm using the intrinsic NIR-II PL of Ag₂S QDs (directly
- 20 obtained from CdS QDs via cation exchange). As shown in Fig. S7, the cell line treated with Ag₂S QDs exhibited
- 21 bright NIR-II PL signal (typical red-white colour).^{1,2} The Ag₂S QDs showed a punctuated cytoplasmic distribution,
- 22 indicative of confinement in endosomes and lysosomes (subcellular locations) as common for QDs. These observed
- 23 results indicated that the QDs can be used as a new type of NIR-II-emitting nanoprobe with high colloidal stability,
- 24 favorable photostability, bright PL emission, as well as outstanding biocompatibility and ultralow cytotoxicity.

25

- Fig. S7 (a) NIR-II PL image (900~1700 nm) and (b) corresponding optical image in vitro of L929 cells treated with Ag₂S QDs (50 μ g mL⁻¹).
- 28

29 **References**

30 (1) Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; et al. Ag₂S Quantum dot: A bright and 31 biocompatible fluorescent nanoprobe in the second near-infrared window. *ACS Nano* **2012**, *6*, 3695-3702.

(2) Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. In-vivo fluorescence
imaging with Ag₂S quantum dots in the second near-infrared region. *Angew. Chem. Int. Ed.* 2012, *51*, 9818-9821.