Electronic Supplementary Information (ESI)

Di-, Tri- and Tetranuclear Molecular Vanadium Phosphonates: A Chloride Encapsulated Tetranuclear Bowl

Dipankar Sahoo,^a Ramakirushnan Suriyanarayanan^b and Vadapalli Chandrasekhar*^{a,c}

^a Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India.

^b Department of Chemistry, University of the Free State, Bloemfontein, South Africa-9300

^c National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Sainik School Road, Bhubaneshwar-751005, Orissa, India.

Fig. S1 ³¹P NMR of **3**.

Fig. S2 ³¹P NMR of **6**.

Fig. S3 ESI-MS of 2.

Fig. S4 ESI-MS of 3.

Fig. S5 ESI-MS of 4.

Fig. S6 ESI-MS of 5.

Fig. S7 ESI-MS of 6.

Fig. S8 Simulated ESI-MS of 1.

Fig. S9 Simulated ESI-MS of 2.

Fig. S10 Simulated ESI-MS of 3.

Fig. S11 Simulated ESI-MS of 4.

Fig. S12 Simulated ESI-MS of 5.

Fig. S13 Simulated ESI-MS of 6.

Fig. S14 (a) Eight-membered (V₂P₂O₄) puckered ring of **1**. Important bond distances (in Å) and angles (in deg.): V1-O3, 1.948(3); V1-O5, 1.958(4); P1-O5, 1.497(3); P2-O3, 1.499(3); O3-V1-O5, 97.89(16); P2-O3-V1, 161.0(3); P1-O5-V1, 162.9(2); O5-P1-O5^{#1}, 114.7(3); O3-P2-O3^{#1}, 114.7(3). (b) Eight-membered (V₂P₂O₄) puckered ring of **2**. Important bond distances (in Å) and angles (in deg.): V1-O2, 1.944(7); V1-O5, 1.967(8); P1-O2, 1.463(7); P2-O5, 1.455(8); O1-V1-O5, 94.5(3); P2-O5-V1, 164.2(6); P1-O2-V1, 164.3(5); O2-P1-O2^{#2}, 114.4(6); O5-P2-O5^{#2}, 114.3(6). Symmetry transformations used to generate equivalent atoms:#1 +X,1/2-Y,+Z; #2 +X,1/2-Y,+Z

Fig. S15 Supramolecular arrangements of **1** along the *c*-axis. Some hydrogen atoms have been removed for clarity.

Fig. S16 Supramolecular arrangements of **2** along the *b*-axis. Some hydrogen atoms have been removed for clarity.

Fig. S17 Supramolecukar arrangements of **3** along the *c*-axis. Some hydrogen atoms have been removed for clarity.

Fig. S18 Supramolecular arrangements of **4** along the *a*-axis. Some hydrogen atoms have been removed for clarity.

Fig. S19 Supramolecular arrangements of **5** along the *c*-axis. Some hydrogen atoms have been removed for clarity.

Fig. S20 Linear chain in supramolecular assembly of 6.

Fig. S21 Supramolecular arrangements of **6** along *a*-axis. Some hydrogen atoms have been removed for clarity.

Fig. S22 Thermogrametric Analysis of 1-6.

(c)

(d)

(e)

(f)

(g)

(h)

U)

Chart S1. Representative examples of vanadium phosphonates.

References (a) & (b) V. Chandrasekhar, A. Dey, T. Senapati and E. C. Sañudo, *Dalton Trans.*, 2012, **41**, 799; (c) D. Wulff-Molder and M. *Meisel Z. Anorg. Allg. Chem.* 2008, **634**, 2966; (d), (e), (f) and (g) S. Khanra, M. Kloth, H. Mansaray, C. A. Muryn, F. Tuna, E. C. Sañudo, M. Helliwell, E. J. L. McInnes and R. E. P. Winpenny *Angew. Angew. Chem. Int. Ed.*, 2007, **46**, 5568; (h) A. Muller, K. Hovemeier and R. Rohlfing *Angew. Chem. Int. Ed.* 1992, **31**, 1192; (i) Q. Chen and J.Zubieta Chem.Commun. 1994,1635; (j) S. Konar and A. Clearfield, *Inorg. Chem.*, 2008, **47**. 3492.

(a)

(b)

(c)

(d)

Chart S2. Bicapped Transition metal phosphonate cages.

References (a) F. Groß, A. Müller-Hartmann and H. Vahrenkamp, *Eur. J. Inorg. Chem.*, 2000, 2363; (b) R. Murugavel, S. Kuppuswamy, A. N. Maity and M. P.Singh, *Inorg. Chem.*, 2009, 48, 183; (c) V. Chandrasekhar, T. Senapati, E. C. Sańudo and R. Clérac, *Inorg. Chem.* 2009, 48, 6192; (d) and (e) V. Chandrasekhar, J. Goura and E. C. Sañudo, *Inorg. Chem.* 2012, 51, 8479.

Table S1. H bonds table for 1 (Figure 2a).

Donor	H atom	Acceptor	DH	HA	DA	< D-H··· A	Symmetry
(D)		(A)	(in Å)	(in Å)	(in Å)	(in deg)	Code
02	H2B	Cl1	0.981	2.226	3.1874	166.5	x,y,-1+z
02	H2A	Cl2	0.819	2.402	3.1915	162.0	x,y,-1+z
O4	H4	Cl1	0.796	2.188	2.9817	174.9	x,y,-1+z
06	H6	Cl2	0.820	2.173	2.9914	176.0	x,y,-1+z

]	Donor	H atom	Acceptor	Symmetry code	DH	HA	DA	< D-H··· A
	(D)		(A)	for equiv. Pos.	(in Å)	(in Å)	(in Å)	(in deg)
	01	H1	Cl1	x,y,1+z	0.820	2.360	3.049(10)	142.0
	03	H3A	Cl1	x,y,1+z	0.850	2.350	3.125(6)	151.0
	03	H3B	C12	-x,-1/2+y,1-z	0.850	2.390	3.156(6)	150.0
	06	H6A	Cl2	-x,-1/2+y,1-z	0.840	2.160	2.980(14)	170.0

Table S2. H bonds table for 2 (Figure 2b).

 Table S3. Hydrogen bonds parameter of 6 (Figure 11).

Donor	Н	Acceptor	DH	HA	DA	< D-H ···A
(D)	atom	(A)	(in Å)	(in Å)	(in Å)	(in deg)
N1	H1F	O6B	0.860	1.966	2.807	165.4
N2	H2	O11B	0.860	2.121	2.977	174.7
C39	H39	O18A	0.930	2.221	3.106	158.7
N3	H3	O6A	0.860	2.114	2.952	164.8
N4	H4B	011A	0.859	1.947	2.805	176.0
C4Q	H4Q	O18B	0.928	2.274	3.127	152.5

	Bond Di	istance (in Å)	Bond Ar	ngle (in °)
0 1	V1-01	1.592(3)	N1-V1-O2	76.99(13)
05 N2	V1-O2	2.326(3)	N2-V1-O2	77.95(13)
V1	V1-05	1.958(4)	O5-V1-O2	83.81(13)
	V1-O3	1.948(3)	O3-V1-O2	82.52(13)
03 N1	V1-N1	2.138(4)	01-V1-02	173.06(16)
U 2	V1-N2	2.122(4)	N2-V1-N1	77.74(14)
Octahedral			O5-V1-N1	158.86(14)
			O3-V1-N1	88.40(15)
			01-V1-N1	97.23(17)
			O5-V1-N2	89.77(15)
			O3-V1-N2	158.12(14)
			01-V1-N2	97.17(16)
			O3-V1-O5	97.89(16)
			01-V1-05	101.24(17)
			01-V1-O3	101.34(16)
	1		1	

 Table S4. Coordination environment around the metal center for 1.

	Bond D	istance (in Å)	Bond Ar	ngle (in °)
6 04	V1-O2	1.967(7)	O2-V1-O3	83.9(3)
	V1-O3	2.288(6)	O2-V1-O4	103.2(3)
V1 05	V1-04	1.584(7)	02-V1-N1	89.9(3)
N2 02	V1-05	1.943(8)	O2-V1-N2	158.4(3)
03	V1-N1	2.114(6)	04-V1-05	101.5(3)
Octanedrai	V1-N2	2.116(8)	O4-V1-O3	170.5(3)
			O4-V1-N1	97.6(3)
			O4-V1-N2	95.6(3)
			O3-V1-O5	84.0(3)
			O5-V1-N1	158.8(3)
			O5-V1-N2	91.8(3)
			N1-V1-O3	75.8(2)
			N2-V1-O3	76.3(3)
			N1-V1-N2	77.2(3)

 Table S5. Coordination environment around the metal center for 2.

	Bond Distance (in Å)		Bond Ar	ngle (in °)
01	V1-03	1.670(4)	01-V1-O3	107.1(2)
N1	V1-05	1.902(5)	03-V1-05	102.7(2)
103	V1-01	1.624(4)	01-V1-N2	95.1(2)
N2 040	V1-04	2.335(4)	O3-V1-N2	153.9(2)
	V1-N1	2.130(6)	O5-V1-N2	85.9(2)
Octahedral	V1-N2	2.207(6)	01-V1-N1	92.9(2)
			O3-V1-N1	91.1(2)
			O5-V1-N1	156.2(2)
			N1-V1-N2	73.8(2)
			01-V1-O4	170.9(2)
			O3-V1-O4	80.54(18)
			O5-V1-O4	81.51(18)
			N2-V1-O4	76.36(17)
			N1-V1-O4	81.74(18)
			01-V1-05	101.3(2)
0 2	V2-O2	1.621(5)	02-V2-03	173.76(2)
N3	V2-07	1.929(5)	02-V2-04	106.4(2)
	V2-N4	2.217(6)	02-V2-07	102.1(2)
N4 07	V2-O3	2.432(4)	O2-V2-N3	93.0(2)
Octahedral	V2-N3	2.141(6)	O2-V2-N4	100.1(2)
	V2-04	1.652(5)	04-V2-07	101.0(2)

 Table S6. Coordination environment around the metal center for 3.

	O4-V2-O3	77.87(19)
	O4-V2-N3	91.1(2)
	O4-V2-N4	149.8(2)
	N3-V2-N4	73.4(2)
	O7-V2-O3	81.16(17)
	07-V2-N3	157.0(2)
	07-V2-N4	86.8(2)
	N3-V2-O3	82.36(17)
	N4-V2-O3	74.62(16)

 Table S7. Coordination environment around the metal center for 4.

	Bond Distance (in Å)	Bond An	gle (in °)
01	V1-O1 1.593(6)	01-V1-O2	177.8(3)
NT 0	V1-O2 2.291(6)	01-V1-N7	97.4(2)
	V1-O3 1.967(4)	01-V1-N7 ^{#1}	97.4(2)
N7#1 03#1	V1-O3 ^{#1} 1.967(4)	01-V1-O3	101.01(18)
02	V1-N7 2.101(5)	O1-V1-O3 ^{#1}	101.01(18)
Octahedral	V1-N7 ^{#1} 2.101(5)	O3-V1-O2	80.49(15)
		O3-V1-O3 ^{#1}	94.1(2)
		O3-V1-N7	91.39(17)
		O3-V1-N7 ^{#1}	159.38(18)

		O3 ^{#1} -V1-N7	159.38(18)
		O3 ^{#1} -V1-N7 ^{#1}	91.39(17)
		O3 ^{#1} -V1-O2	80.48(15)
		N7-V1-N7 ^{#1}	77.0(2)
		N7-V1-O2	80.85(18)
		N7 ^{#1} -V1-O2	80.85(18)
05#1	V2-O4 1.617(6)	04-V2-05	100.38(18)
N15#1	V2-O5 1.951(4)	O4-V2-O4 ^{#1}	100.38(18)
07	V2-O5 ^{#1} 1.974(4)	O4-V2-O7	175.3(3)
05	V2-O7 2.238(6)	O4-V2-N15	94.3(2)
	V2-N15 2.108(6)	O4-V2-N15 ^{#1}	94.3(2)
Octahedral	V2-N15 ^{#1} 2.107(6)	O5-V2-O5 ^{#1}	96.8(2)
		O5-V2-O7	82.67(18)
		O5-V2-N15	90.17(19)
		O5-V2-N15 ^{#1}	162.3(2)
		O5 ^{#1} -V2-N15	162.3(2)
		O5 ^{#1} -V2-N15 [#]	⁴¹ 90.17(19)
		O5 ^{#1} -V2-O7	82.67(18)
		N15-V2-N15 [#]	¹ 78.8(3)
		N15-V2-O7	82.1(2)

09	V3-O6 1.945(4)	O6-V3-O ^{#1}	95.7(2)
N6#1 06#1	V3-O6 ^{#1} 1.945(4)	O6-V3-O9	81.90(16)
NG	V3-O8 1.595(7)	O6-V3-N6	89.96(17)
V3 06	V3-O9 2.293(6)	O6-V3-N6 ^{#1}	157.98(19)
08	V3-N6 2.126(5)	O6 ^{#1} -V3-O9	81.90(16)
Octahedral	V3-N6 ^{#1} 2.126(5)	O6 ^{#1} -V3-N6	89.96(17)
		O6 ^{#1} -V3-O8	101.64(19)
		08-V3-09	174.6(3)
		08-V3-N6	98.0(2)
		08-V3-N6 ^{#1}	98.0(2)
		N6-V3-N6 ^{#1}	77.5(3)
		N6-V3-O9	77.86(19)
		N6 ^{#1} -V3-O9	77.86(19)

Symmetry transformations used to generate equivalent atoms: +X,1-Y,+Z

Table S8. Coordination environment around the metal center for **5**.

	Bond Distance (in Å)	Bond Angle (in °)
04	V1-O1 1.589(7)	O1-V1-O2 101.5(3)
	V1-O2 1.949(7)	O1-V1-O3 101.2(3)
N2 N1 02	V1-O3 1.952(7)	O1-V1-O4 176.7(3)
03 V1	V1-O4 2.321(6)	O1-V1-N1 96.8(3)
01	V1-N1 2.096(9)	O1-V1-N2 98.8(3)
Octahedral	V1-N2 2.119(8)	O2-V1-O3 95.3(3)
		O2-V1-O4 78.8(3)

	O2-V1-N2	157.0(3)
	O2-V1-N1	90.9(3)
	O3-V1-O4	82.0(3)
	O3-V1-N1	159.4(3)
	O3-V1-N2	91.0(3)
	N1-V1-O4	79.9(3)
	N2-V1-O4	80.2(3)
	N1-V1-N2	76.2(3)

Table S9. Coordination environment around the metal center for 6.

	Bond distances (in Å)	Bond angles (in °)
014	V1A-O1A 1.576(5)	O1A-V1A-O2A 100.1(2)
	V1A-O2A 1.941(5)	O1A-V1A-O3A 102.3(2)
018A V1A 03A	V1A-O3A 1.796(5)	O1A-V1A-O18A 100.9(2)
	V1A-O18A 1.878(5)	O1A-V1A-O20A 101.4(2)
OZUA OZA	V1A-O20A 1.984(5)	O2A-V1A-O3A 88.6(2)
Square pyramidal		O2A-V1A-O18A 157.7(2)
		O2A-V1A-O20A 82.82(19)
		O3A-V1A-O18A 94.1(2)
		O3A-V1A-O20A 155.9(2)
		O18A-V1A-O20A 85.8(2)
	V2A-O3A 1.848(5)	O3A-V2A-O5A 87.86(19)

06A	V2A-05A	1.985(5)	O3A-V2A-O6A	99.5(2)
	V2A-06A	1.597(5)	O3A-V2A-O7A	160.0(2)
08A	V2A-07A	1.974(5)	O3A-V2A-O8A	94.7(2)
VZA OFA	V2A-08A	1.802(5)	O5A-V2A-O6A	101.8(2)
Square pyramidal			05A-V2A-07A	81.88(19)
			05A-V2A-08A	157.0(2)
			06A-V2A-07A	99.5(2)
			06A-V2A-08A	100.3(2)
			07A-V2A-08A	88.4(2)
	V3A-O8A	1.847(5)	08A-V3A-O10A	86.9(2)
011A	V3A-010A	1.993(5)	08A-V3A-011A	98.8(2)
012A 010A	V3A-011A	1.592(5)	08A-V3A-012A	157.9(2)
V3A	V3A-012A	1.946(5)	08A-V3A-013A	93.9(2)
013A 08A	V3A-013A	1.806(5)	010A-V3A-011A	101.1(2)
Square pyramidai			O10A-V3A-O12A	82.1(2)
			O10A-V3A-O13A	156.4(2)
			011A-V3A-012A	102.1(2)
			011A-V3A-013A	102.1(2)
			O12A-V3A-O13A	88.7(2)
	V4A-013A	1.835(5)	013A-V4A-015A	87.4(2)
	V4A-015A	1.989(5)	013A-V4A-016A	101.1(2)
	V4A-016A	1.585(5)	013A-V4A-017A	157.1(2)
	V4A-017A	1.966(5)	O13A-V4A-O18A	94.7(2)

016A	V4A-018A	1.818(5)	015A-V4A-016A	100.5(2)
017A 015A			O15A-V4A-O17A	82.94(19)
			O15A-V4A-O18A	157.6(2)
V4A 0134			016A-V4A-017A	101.0(2)
Square pyramidal			O16A-V4A-O18A	100.9(2)
			017A-V4A-018A	86.8(2)

Table S10. BVS Calculation for 1.

Atom	BVS
V1	$3.94 \approx 4$

 Table S11. BVS Calculation for 2.

Atom	BVS
V1	$4.05 \approx 4$
V2	$4.03 \approx 4$

Table S12. BVS Calculation for **3**.

Atom	BVS
V1	4 .97 ≈ 5
V2	4 .93 ≈ 5

 Table S13. BVS Calculation for 4.

Atom	BVS
V1	$3.98 \approx 4$
V2	$3.95 \approx 4$
V3	$3.99 \approx 4$

 Table S14. BVS Calculation for 5.

Atom	BVS
V1	$3.97 \approx 4$
V2	$4.00 \approx 4$
V3	$3.94 \approx 4$

 Table S15. BVS Calculation for 6.

Atom	BVS
V1	$4.97 \approx 5$
V2	$4.84 \approx 5$
V3	4.83 ≈ 5
V4	$4.82 \approx 5$