Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Heterodinuclear M^{II}-Ln^{III} single molecule magnets constructed

from exchange-coupled single ion magnets

Qi-Wei Xie^a, Shu-Qi Wu^a, Wen-Bo Shi^a, Cai-Ming Liu^b, Ai-Li Cui^a

and Hui-Zhong Kou,^{†a} ^{† a} Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

E-mail: kouhz@mail.tsinghua.edu.cn.

^b Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. Chinaa.

Fig. S1. Crystal structure of complexes 2-4.

Fig. S2. Temperature dependence of $\chi_m T$ per Zn^{II}Dy^{III} unit for a diluted sample Z ZnDy_{0.0885}Y_{0.9115} (Dy:Y = 1:10.3 determined by ICP analysis) of complex **1**.

Fig. S3. Field dependence of magnetization for complex 1 at 2.0 K.

Fig. S4. Field dependence of magnetization for complex 2 at 2.0 K. The red line is the best fitting result with g = 2.39, D = 10.3 cm⁻¹ and $E = 4 \times 10^{-4}$ cm⁻¹.

Fig. S5. Field dependence of magnetization for complex 3 at 2.0 K.

Fig. S6. Field dependence of magnetization for complex 4 at 2.0 K. The red line is the best fitting result with g = 1.89 and D = 0.17 cm⁻¹.

Fig. S7. Temperature dependence of in-phase magnetic susceptibility of complex 1 under 2 kOe dc field.

Fig. S8. Temperature dependence of in-phase magnetic susceptibility of complex 2 under 2 kOe dc field.

Fig. S9. Temperature dependence of in-phase magnetic susceptibility of complex 3 under 2 kOe dc field.

Fig. S10. Cole-Cole plots in 2 kOe applied dc filed for complexes **1** (top) and **2** (bottom). The solid lines represent the best fit by using the parameters in Tables S1 and S2, respectively.

<i>T</i> (K)	χs	χt	β	α ₁	$ au_1$	α ₂	τ_2
3	8.05E-17	8.82	0.30	0.11	0.048	0.31	0.64
4	6.92E-18	7.53	0.33	0.36	0.91	0.22	0.024

Table S1. Relaxation Fitting Parameters from Least-Squares Fitting of $\chi(\omega)$ data for Complex 1

Table S2. Relaxation Fitting Parameters from Least-Squares Fitting of $\chi(\omega)$ data for Complex 2

<i>T</i> (K)	χs	χt	β	α_1	τ_1	α ₂	τ_2
2	0.0049	0.95	0.79	0.14	0.0072	0.38	0.40
2.5	2.32E-16	0.77	0.71	0.059	0.0041	0.62	0.034

The corresponding expression of molar magnetic susceptibility for complex 4 is given in Eq. (S1).

$$\hat{H} = -2J_{\text{CoGd}} \hat{S}_{\text{Gd}} \hat{S}_{\text{Co}}$$

$$\chi_{\text{m}} = \frac{N\beta^{2}}{3k(T-\theta)} \cdot \frac{330g_{(5)}^{2} \exp(24x) + 180g_{(4)}^{2} \exp(14x) + 84g_{(3)}^{2} \exp(6x) + 30g_{(2)}^{2}}{11\exp(24x) + 9\exp(14x) + 7\exp(6x) + 5} \quad (S1)$$

$$x = J_{\text{CoGd}} / kT,$$

$$g_{(5)} = \frac{7}{10}g_{\text{Gd}} + \frac{3}{10}g_{\text{Co}},$$

$$g_{(4)} = \frac{8}{10}g_{\text{Gd}} + \frac{2}{10}g_{\text{Co}},$$

$$g_{(3)} = g_{\text{Gd}},$$

$$g_{(2)} = \frac{3}{2}g_{\text{Gd}} - \frac{1}{2}g_{\text{Co}}$$