SUPPORTING INFORMATION

Structural and Thermodynamic Similarities of Phases in the Li–*Tt* (*Tt* = Si, Ge) Systems: Redetermination of the Lithium-Rich Side of the Li–Ge Phase Diagram and Crystal Structures of $\text{Li}_{17}\text{Si}_{4.0-x}\text{Ge}_x$ for *x* = 2.3, 3.1, 3.5, and 4 as well as $\text{Li}_{4.1}\text{Ge}$

Michael Zeilinger and Thomas F. Fässler*

Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching b. München, Germany

Details on the structure refinement of Li_{4.096(4)}Ge

The structure of Li_{16.38(2)}Ge₄ is isotypic with Li_{4.11}Si (Li_{16.42(1)}Si₄) and the disorder model highlighted in this article corresponds to the one reported for Li_{16.42(1)}Si₄. Atom positions Li4A on 4*c* (½, *y*, ¼), Li4B on 8*g* (*x*, *y*, ¼), and Li5 on 8*f* (0, *x*, *y*) are affected by disorder (cf. Table 2). A free refinement of occupancy factors for Li4A and Li4B delivers values of 0.669(15) und 0.390(8). Within standard deviations (3 σ), those values are in agreement with refinement results using the constraint *occ*(Li4A) + *occ*(Li4B) = 1 (0.616(8) and 0.384(8)) which excludes their simultaneous occupancy since otherwise meaningless Li–Li distances are observed.

For Li5 on 8*f* (0, *x*, *y*), a split position was introduced. The split fractions converged to 0.25(4) and 0.75(4) which is identical with results obtained from a free refinement of occupancy factors for these positions (0.74(4) and 0.25(4)). The *R*-values of the final model are $R_1 = 0.023$ and $wR_2 = 0.027$ for all data and residual electron densities are +0.69 e·Å⁻³ and -0.52 e·Å⁻³. Ignoring the atom split, the reliability factors for all data are slightly higher ($R_1 = 0.024$ and $wR_2 = 0.030$) but significant residual electron density is almost exactly located at the former Li5B position (+1.134 e·Å⁻³).

Regarding the relevance of the atom split for Li5, it demonstrates structural flexibility which comes along with the disorder of Li4A and Li4B. In detail, if position Li4B is occupied, a simultaneous occupancy of Li5B is excluded due to unreasonably short Li–Li distances (2.02(4) Å). In case of an occupied Li4A site, either Li5A or Li5B can be occupied (2.86(3) Å (Li4A–Li5B), 3.220(7) Å (Li4A–Li5B)).

$Li_{17}Si_{4-x}Ge_x$ [x = 2.30(2), 3.08(4), 3.53(3)]: Single Crystal X-ray diffraction and crystallographic details

The preparation of crystals from Li₁₇Si_{4-x}Ge_x [x = 2.30(2), 3.08(4), 3.53(3)] exactly follows the procedure described in the main article. For Li₁₇Si_{4-x}Ge_x [x = 2.30(2), 3.08(4)], single crystal diffraction data were collected at 123 K on an OXFORD XCALIBUR3 diffractometer (SAPPHIRE3 CCD detector) equipped with a graphite monochromated Mo K_{α} radition ($\lambda = 0.71073$ Å) using the Oxford CrysAlisRED software.¹ Empirical absorption correction was carried out with the SCALE3 ABSPACK scaling algorithm as implemented in CRYSALISRED. For Li₁₇Si_{0.47(3)}Ge_{3.53(3)}, intensity data were collected at 123 K on a BRUKER X-ray diffractometer equipped with a CCD detector (APEX II, κ -CCD), a rotating anode (NONIUS, FR591) with Mo K_{α} radiation ($\lambda = 0.71073$ Å) and a Montel mirror using the BRUKER APEX Software Suite.² Integration, data reduction and absorption correction was done with SAINT and SADABS.^{3,4}

In case of Li₁₇Si_{0.92(4)}Ge_{3.08(4)}, penetration twinning along [1 1 1] was detected (twin fraction 0.45). Only single reflections of the main domain were used, composite reflections from both domains were omitted. For all compounds, the space group $F\overline{4}3m$ was assigned on the basis of the systematic absences and the statistical analysis of the intensity distributions. Since $F\overline{4}3m$ is non-centrosymmetric, only identical indices were merged. Fractional atomic coordinates and atomic displacement parameters for Si/Ge mixed sites were set equal. The structures were solved with direct methods (SHELXS-97) and refined with full-matrix least squares on F^2 (SHELXL-97).^{5, 6} Table S1–S4 list refinement results, fractional atomic coordinates, and isotropic equivalent atomic displacement parameters for Li₁₇Si_{4-x}Ge_x [x = 2.30(2), 3.08(4), 3.53(3)].

empirical formula	Li ₁₇ Si _{1.70(2)} Ge _{2.30(2)}	$Li_{17}Si_{0.92(4)}Ge_{3.08(4)}$	$Li_{17}Si_{0.47(3)}Ge_{3.53(3)}$
T/K	123(2)	123(2)	123(2)
diffractometer	Oxford Xcalibur	Oxford Xcalibur	Bruker APEX II
formula weight / $g \cdot mol^{-1}$	332.69	367.44	387.34
crystal size / mm ³	$0.20 \times 0.20 \times 0.10$	$0.10 \times 0.10 \times 0.10$	$0.20 \times 0.20 \times 0.15$
crystal color	metallic silver	metallic silver	metallic silver
crystal shape	block	block	block
space group	$F\overline{4}3m$	$F\overline{4}3m$	$F\overline{4}3m$
structure type	$Li_{17}Pb_4$	$Li_{17}Pb_4$	$Li_{17}Pb_4$
unit cell dimension / Å	a = 18.7125(1)	a = 18.7515(2)	a = 18.7721(5)
V / Å ³	6552.33(6)	6593.4(1)	6615.1(3)
Ζ	20	20	20
ho (calc.) / (g·cm ⁻³)	1.686	1.851	1.945
μ / mm $^{-1}$	5.354	6.995	7.928
F(000)	2968	3249	3410
heta - range / °	3.61-30.45	3.07-30.00	2.17-30.03
index range hkl	$-26 \le h \le +14,$	$-26 \le h \le +25$,	$-26 \le h \le +18$,
	$-26 \le k \le +26,$	$-26 \le k \le +26,$	$-26 \le k \le +19,$
	$-26 \le l \le +26$	$-26 \le l \le +26$	$-24 \le l \le +22$
reflections collected	31663	26446	19618
independent reflections	1035 ($R_{\rm int} = 0.032$)	952 ($R_{\rm int} = 0.061$)	$1019 (R_{\rm int} = 0.041)$
reflections with $I > 2\sigma(I)$	991 ($R_{\sigma} = 0.010$)	880 ($R_{\sigma} = 0.021$)	$1016 (R_{\sigma} = 0.015)$
data/restraints/parameter	1035/0/72	952/0/72	1019/0/72
absorption correction	multi-scan	multi-scan	multi-scan
goodness-of-fit on F^2	1.260	1.000	1.202
Final R indices $[I > 2\sigma(I)]^{a, b}$	$R_1 = 0.016$	$R_1 = 0.022$	$R_1 = 0.014$
	$wR_2 = 0.036$	$wR_2 = 0.047$	$wR_2 = 0.036$
<i>R</i> indices (all data) ^{a, b}	$R_1 = 0.017$	$R_1 = 0.025$	$R_1 = 0.014$
	$wR_2 = 0.036$	$wR_2 = 0.048$	$wR_2 = 0.037$
extinction coefficient	4.4(3)×10 ⁻⁴	$2.4(3) \times 10^{-4}$	$0.9(1) \times 10^{-4}$
Flack parameter	0.42(3)	0.54(5)	0.54(3)
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.45 and -0.28	0.32 and -0.26	0.28 and -0.37

Table S1.	Crystallographic	data and structure	refinement for	Li ₁₇ Si _{4-x} Ge	$e_x [x = 2.30]$	(2), 3.08(4)	, 3.53(3)].
-----------	------------------	--------------------	----------------	---------------------------------------	------------------	--------------	-------------

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$ ^b $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$

Atom	Wyckoff	x	У	Ζ	$U_{ m eq}$	s.o.f.
	position				$/(\text{\AA}^2 \cdot 10^{-3})$	
Si/Ge1	16e	0.15972(2)	x	x	7.2(2)	0.41(1) / 0.59(1)
Si/Ge2	16e	0.91675(2)	x	x	6.6(2)	0.522(9) / 0.478(9)
Si/Ge3	24 <i>f</i>	0.32154(3)	0	0	7.6(2)	0.39(1) / 0.61(1)
Si/Ge4	24g	0.57001(3)	1/4	1⁄4	7.8(1)	0.40(1) / 0.60(1)
Li1	16e	0.0743(3)	x	x	16(2)	1
Li2	16e	0.3027(2)	x	x	11(1)	1
Li3	16e	0.4187(3)	x	x	12(1)	1
Li4	16e	0.5573(2)	x	x	12(1)	1
Li5	16e	0.6882(2)	x	x	15(1)	1
Li6	16e	0.8325(2)	x	x	19(2)	1
Li7	24 <i>f</i>	0.1686(4)	0	0	19(2)	1
Li8	24g	0.0746(3)	1/4	1/4	10(2)	1
Li9	48 <i>h</i>	0.0909(2)	x	0.2625(3)	19(1)	1
Li10	48 <i>h</i>	0.0907(2)	x	0.7609(3)	21(1)	1
Li11	48 <i>h</i>	0.1550(2)	x	0.5211(2)	21(1)	1
Li12	48 <i>h</i>	0.1632(2)	x	0.0026(3)	12(1)	1
Li13	4 <i>a</i>	0	0	0	13(3)	1

Table S2. Fractional atomic coordinates and isotropic equivalent atomic displacement parameters for $Li_{17}Si_{1.70(2)}Ge_{2.30(2)}$ (*F*43*m*, *Z* = 20, *T* = 123 K, estimated standard deviations in parentheses).

Atom	Wyckoff	x	У	Ζ	$U_{ m eq}$	s.o.f.
	position				$/(\text{\AA}^2 \cdot 10^{-3})$	
Si/Ge1	16e	0.15999(3)	x	x	9.5(2)	0.22(2) / 0.78(2)
Si/Ge2	16e	0.91708(3)	x	x	8.6(2)	0.30(2) / 0.70(2)
Si/Ge3	24f	0.32192(4)	0	0	9.6(2)	0.22(2) / 0.78(2)
Si/Ge4	24g	0.56959(4)	1/4	1⁄4	10.8(2)	0.21(2) / 0.79(2)
Li1	16e	0.0732(5)	x	x	29(4)	1
Li2	16e	0.3019(3)	x	x	17(2)	1
Li3	16e	0.4186(5)	x	x	20(3)	1
Li4	16e	0.5578(3)	x	x	16(2)	1
Li5	16e	0.6893(4)	x	x	20(3)	1
Li6	16e	0.8329(5)	x	x	45(5)	1
Li7	24 <i>f</i>	0.1694(7)	0	0	27(5)	1
Li8	24g	0.0755(6)	1/4	1⁄4	12(4)	1
Li9	48 <i>h</i>	0.0910(4)	x	0.2622(4)	22(2)	1
Li10	48 <i>h</i>	0.0919(5)	x	0.7631(6)	41(3)	1
Li11	48 <i>h</i>	0.1553(3	x	0.5218(4)	23(2)	1
Li12	48 <i>h</i>	0.1636(3)	x	0.0031(5)	15(2)	1
Li13	4 <i>a</i>	0	0	0	17(6)	1

Table S3. Fractional atomic coordinates and isotropic equivalent atomic displacement parameters for $Li_{17}Si_{0.92(4)}Ge_{3.08(4)}$ (*F*43*m*, *Z* = 20, *T* = 123 K, estimated standard deviations in parentheses).

Atom	Wyckoff	x	У	Ζ	$U_{ m eq}$	s.o.f.
	position				$/(\text{\AA}^2 \cdot 10^{-3})$	
Si/Ge1	16e	0.15962(1)	x	x	7.5(1)	0.10(1) / 0.90(1)
Si/Ge2	16e	0.91657(1)	x	x	6.2(1)	0.18(1) / 0.82(1)
Si/Ge3	24 <i>f</i>	0.32124(2)	0	0	7.3(1)	0.10(1) / 0.90(1)
Si/Ge4	24g	0.57034(2)	1⁄4	1/4	7.3(1)	0.11(1)/0.89(1)
Li1	16e	0.0740(3)	x	x	20(2)	1
Li2	16e	0.3028(2)	x	x	14(1)	1
Li3	16e	0.4179(3)	x	x	14(2)	1
Li4	16e	0.5573(2)	x	x	14(1)	1
Li5	16e	0.6872(2)	x	x	15(1)	1
Li6	16e	0.8317(2)	x	x	18(2)	1
Li7	24 <i>f</i>	0.1672(4)	0	0	19(2)	1
Li8	24g	0.0747(3)	1/4	1/4	12(2)	1
Li9	48h	0.0908(2)	x	0.2622(3)	22(1)	1
Li10	48h	0.0900(2)	x	0.7614(3)	18(1)	1
Li11	48h	0.1553(2)	x	0.5197(2)	17.1(9)	1
Li12	48 <i>h</i>	0.1633(2)	x	0.0018(3)	14(1)	1
Li13	4 <i>a</i>	0	0	0	8(3)	1

Table S4. Fractional atomic coordinates and isotropic equivalent atomic displacement parameters for $Li_{17}Si_{0.47(3)}Ge_{3.53(3)}$ (*F*43*m*, *Z* = 20, *T* = 123 K, estimated standard deviations in parentheses).

Table S5.⁸ Comparison of experimental and computational relaxed fractional atomic coordinates for $\text{Li}_{21}\text{Si}_5^{7, 8}$ ($a_{\text{exp.}} = 18.710(2)$ Å (T = 298 K), $a_{\text{calc.}} = 18.55411$ Å, $F\overline{4}3m$, Z = 16) and $\text{Li}_{17}\text{Si}_4^{8}$ ($a_{\text{exp.}} = 18.6563(2)$ Å (T = 123 K) and $a_{\text{calc.}} = 18.57319$ Å, $F\overline{4}3m$, Z = 20). Estimated standard deviations are given in parentheses; most differing Li1 is marked in bold.

Atom	Wyck.	r(Ii Si)	x (Li ₂₁ Si ₅	Ζ	z (Li ₂₁ Si ₅	r(Ii Si)	x (Li ₁₇ Si ₄	$\tau(\mathbf{I} \in \mathbf{S}_{\mathbf{i}})$	z (Li ₁₇ Si ₄
Atom	pos.	x (L1 ₂₁ S1 ₅)	calc.)	$(Li_{21}Si_5)$	calc.)	λ (LI ₁₇ SI ₄)	calc.)	2 (L1 ₁₇ 51 ₄)	calc.)
Tt1	16e	0.1595(2)	0.1605	x	x	0.15976(1)	0.1600	x	x
Tt2	16e	0.9175(2)	0.9149	x	x	0.91660(1)	0.9167	x	x
Tt3	24 <i>f</i>	0.3220(3)	0.3219	0	0	0.32133(1)	0.3215	0	0
Tt4	24g	0.5691(3)	0.5700	1⁄4	1⁄4	0.57031(1)	0.5708	1⁄4	1/4
Li1	16e	0.071(2)	0.0553	x	x	0.07410(6)	0.0750	x	x
Li2	16e	0.304(1)	0.3027	x	x	0.30284(5)	0.3031	x	x
Li3	16e	0.417(1)	0.4189	x	x	0.41794(7)	0.4180	x	x
Li4	16e	0.559(2)	0.5572	x	x	0.55713(5)	0.5572	x	x
Li5	16e	0.688(2)	0.6862	x	x	0.68687(5)	0.6867	x	x
Li6	16e	0.829(1)	0.8301	x	x	0.83168(6)	0.8311	x	x
Li7	24 <i>f</i>	0.174(2)	0.1725	0	0	0.16807(8)	0.1691	0	0
Li8	24g	0.073(2)	0.0747	1⁄4	1⁄4	0.07492(9)	0.0750	1/4	1/4
Li9	48h	0.092(1)	0.0910	0.262(1)	0.2630	0.09068(4)	0.0907	0.26186(6)	0.2616
Li10	48h	0.088(1)	0.0905	0.761(1)	0.7616	0.09013(5)	0.0900	0.76176(6)	0.7604
Li11	48h	0.153(1)	0.1550	0.521(1)	0.5203	0.15503(4)	0.1551	0.51978(6)	0.5193
Li12	48 <i>h</i>	0.164(1)	0.1607	0.000(1)	0.0068	0.16327(4)	0.1635	0.00286(7)	0.0029
Li13	4 <i>a</i>	-	-	-	-	0	0	0	0

Table S6. Comparison of experimental fractional atomic coordinates for $\text{Li}_{17}\text{Si}_4^8$ (a = 18.6563(2) Å, T = 123 K), $\text{Li}_{17}\text{Ge}_4$ (a = 18.8521(3) Å, T = 298 K), $\text{Li}_{17-e}\text{Zn}_e\text{Ge}_4^9$ (a = 18.842(1) Å, T = 173 K), and $\text{Li}_{16.95}\text{Ge}_4^{10}$ (a = 18.756(2) Å, T = 160 K; space group $F\overline{4}3m$, Z = 20). Estimated standard deviations are given in parentheses.

Atom	Wyck.	r (Linsin)	r (LinGar)	x	x	- (I iSi.)	Ζ	Z	Z
Atom	pos.	x (L117514)	x (LI17Ge4)	$(Li_{17-\varepsilon}Zn_{\varepsilon}Ge_{4})$	(Li _{16.95} Ge ₄)	2 (L117514)	$(Li_{17}Ge_4)$	$(Li_{17-\varepsilon}Zn_{\varepsilon}Ge_{4})$	$(Li_{16.95}Ge_4)$
Tt1	16e	0.15976(1)	0.15955(1)	0.15958(2)	0.15952(5)	x	х	x	x
Tt2	16e	0.91660(1)	0.91657(1)	0.91667(3)	0.91684(5)	x	x	x	x
Tt3	24 <i>f</i>	0.32133(1)	0.32102(1)	0.32118(4)	0.32112(7)	0	0	0	0
Tt4	24g	0.57031(1)	0.57015(1)	0.57020(4)	0.56965(7)	1⁄4	1/4	1/4	1⁄4
Li1A	16e	0.07410(6)	0.0734(2)	0.0747(6)	0.0775	x	x	x	x
Li1B	16e	-	-	-	0.0587	-	-	-	x
Li2	16e	0.30284(5)	0.3031(2)	0.3033(3)	0.3032(6)	x	x	x	x
Li3	16e	0.41794(7)	0.4175(2)	0.4179(5)	0.4169(9)	x	x	x	x
Li4	16e	0.55713(5)	0.5575(2)	0.5584(4)	0.5579(6)	x	x	x	x
Li5	16e	0.68687(5)	0.6877(2)	0.6864(4)	0.6876(7)	x	x	x	x
Li6	16e	0.83168(6)	0.8314(2)	0.8331(4)	0.8329(7)	x	x	x	x
Li7	24 <i>f</i>	0.16807(8)	0.1677(3)	0.1678(6)	0.170(1)	0	0	0	0
Li8	24g	0.07492(9)	0.0743(3)	0.0740(6)	0.075(1)	1/4	1/4	1⁄4	1⁄4
Li9	48h	0.09068(4)	0.0913(2)	0.0906(3)	0.0907(7)	0.26186(6)	0.2624(2)	0.2631(4)	0.2660(8)
Li10	48h	0.09013(5)	0.0896(2)	0.0904(4)	0.0914(7)	0.76176(6)	0.7612(2)	0.7613(4)	0.7597(9)
Li11	48h	0.15503(4)	0.1547(1)	0.1554(3)	0.1540(5)	0.51978(6)	0.5205(2)	0.5216(4)	0.5216(9)
Li12	48h	0.16327(4)	0.1637(1)	0.1632(3)	0.1625(5)	0.00286(7)	0.0027(2)	0.0025(5)	0.005(1)
Li13	4 <i>a</i>	0	0	0	0	0	0	0	0
Zn1	4a	-	-	0	-	-	-	0	-

Atom	Wyck. pos.	<i>x</i> (Li _{16.95} Ge ₄)	x (Li ₂₁ Si ₅ calc.)	$z (Li_{16.95}Ge_4)$	z (Li ₂₁ Si ₅ calc.)
Tt1	16e	0.15952(5)	0.1605	x	x
Tt2	16e	0.91684(5)	0.9149	x	x
Tt3	24 <i>f</i>	0.32112(7)	0.3219	0	0
Tt4	24g	0.56965(7)	0.5700	1/4	1/4
LilA	16e	0.0775	0.0553	x	x
Li1B	16e	0.0587	-	x	-
Li2	16e	0.3032(6)	0.3027	x	x
Li3	16e	0.4169(9)	0.4189	x	x
Li4	16e	0.5579(6)	0.5572	x	x
Li5	16e	0.6876(7)	0.6862	x	x
Li6	16e	0.8329(7)	0.8301	x	0
Li7	24 <i>f</i>	0.1697(12)	0.1725	0	0
Li8	24g	0.0752(12)	0.0747	1/4	1/4
Li9	48h	0.0907(7)	0.0910	0.2660(8)	0.2630
Li10	48h	0.0914(7)	0.0905	0.7597(9)	0.7616
Li11	48 <i>h</i>	0.1540(5)	0.1550	0.5216(9)	0.5203
Li12	48 <i>h</i>	0.1625(5)	0.1607	0.005(1)	0.0068
Li13	4 <i>a</i>	0	-	0	-

Table S7. Comparison of experimental fractional atomic coordinates for $\text{Li}_{16.95}\text{Ge}_4^{10}$ (a = 18.756(2) Å, T = 160 K; space group $F\bar{4}3m$, Z = 20) and computational relaxed ones for $\text{Li}_{21}\text{Si}_5^{8}$ ($a_{\text{calc.}} = 18.55411$ Å, $F\bar{4}3m$, Z = 16). Estimated standard deviations are given in parentheses.

Figure S1. PXRD patterns of "Li₁₆Ge₄" samples annealed at 200, 400 and 510 °C in tantalum ampules for three days followed by quenching in water (experimental = black, $Li_{17}Ge_4$ (calc.) = yellow, $Li_{4.10}Ge$ (calc.) = blue, $Li_{15}Ge_4$ (calc.) = red).

Figure S2. Rietveld¹¹ fits of the $Li_{17}Si_4$ model to PXRD patterns of ground single crystals of $Li_{17}Si_{4-x}Ge_x$ (x = 0, 2.30(2), 3.08(4), 3.53(3), 4).

REFERENCES

- 1. CrysalisRED, Version 1.171.33.34d; Oxford Diffraction, UK, 2009.
- APEX suite of crystallographic software, APEX 2 Version 2008.4, Bruker AXS Inc., Madison, WI, USA, 2008.
- 3. SAINT, Version 7.56a, Bruker AXS Inc., Madison, WI, USA, 2008.
- 4. SADABS, Version 2008/1, Bruker AXS Inc., Madison, WI, USA, 2008.
- G. M. Sheldrick, Shelxs-97 Program for the Determination of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.
- G. M. Sheldrick, Shelx1-97 Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.
- 7. R. Nesper and H. G. von Schnering, J. Solid State Chem., 1987, 70, 48–57.
- M. Zeilinger, D. Benson, U. Häussermann and T. F. Fässler, *Chem. Mater.*, 2013, 25, 1960–1967.
- 9. L. Lacroix-Orio, M. Tillard and C. Belin, J. Alloys Compd., 2008, 465, 47–50.
- G. R. Goward, N. J. Taylor, D. C. S. Souza and L. F. Nazar, J. Alloys Compd., 2001, 329, 82–91.
- TOPAS Rietveld Software, Version 4.0; Bruker AXS Inc., Madison, WI, USA, 2009.