Supporting Information

A highly selective colorimetric chemosensor for cobalt(II) ion based on a tripodal amide ligand

Jing-Ru Zhou, Da-Peng Liu, Yue He, Xiang-Jian Kong,* Zhi-Ming Zhang, Yan-Ping Ren,* La-Sheng Long, Rong-Bin Huang, and Lan-Sun Zheng

General Methods

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AV 500 NMR spectrometer. ¹H NMR spectra were registered in CDCl₃, and chemical shifts are expressed in parts per million (δ) relative to internal Me₄Si. All coupling constants are absolute values and J values are expressed in Hertz (Hz). The description of signals include: s = singlet, bs = broad singlet, d = doublet, m = multiplet, dd = doublet of doublets. HR-MS spectra were recorded on a Bruker En Apex ultra 7.0T FT-MS apparatus. IR spectra were recorded on a Nicolet Avatar 360FT-IR spectrometer as KBr disks.

All reagents were of commercial origin and were used as received. Tetrahydrofuran (THF) was distilled prior to use from benzophenone. Silica gel (zhifu, 300-400 mesh) from Yantai silica gel factory (China) was used for column chromatography, eluting (unless otherwise stated) with ethyl acetate.

The acylating chlorination of the 5-(Methoxycarbonyl) Picolinic Acid was prepared as follows: The entire reaction vessel was dried to remove the water beforehand. At 75 °C, 10 mL (A.R.) SOCl₂ was slowly added to the 5-(Methoxycarbonyl) picolinic Acid (0.543 g, 3 mmol). The solution was refluxed for 7 h at 75 °C. Excess thionyl chloride was then removed in vacuum under stirring to get the acid chloride.

Figure S1. The acylating chlorination of the 5-(Methoxycarbonyl) picolinic Acid

The detailed synthesis method of Tris {2-carbamoyl-(5-carbomethoxy-pyridine-2) ethyl} amine (H_3L , 1): Et₃N (0.5 mL, to remove excess acid) was added to a dry flask filled with acid chloride (0.597 g, 3 mmol) was added in anhydrous THF (30 mL) slowly under N₂ protection, then Tris(2-aminoethyl)amine (0.15 ml, 1 mmol) was added dropwise. The solution turned yellow. The solution stirred for 24 h under room temperature. Then saturated aqueous NH₄Cl (10 mL) was added and the solution was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and filtered. After concentration in vacuum, the residue was purified by flash chromatography on silica gel with CH₃COOC₂H₅ to afford H_3L as a colorless solid in a 40 % yield.

Figure S2. Synthesis of Tris{2-carbamoyl-(5-carbomethoxy-pyridine-2)ethyl}amine (H₃L, 1)

Figure S3. a) ¹H NMR spectrum of $(H_3L, 1)$ (up); b) ¹³C NMR spectrum of $(H_3L, 1)$ (down).

Figure S4. HR-MS spectrum of the ligand (H₃L, 1).

Figure S5. TGA curve of the ligand $(H_3L, 1)$.

Figure S6. Column chart of the UV-vis absorbance measured at 370 nm of the H_3L solutions in the presence of different metal ions. (The absorbance of the H_3L solution was defined as zero, all the metal ions were added as their perchlorate salts, the blank means H_3L solution, all the metal ions were added equivalent to the H_3L)

Figure S7. UV-vis spectrum of the aqueous solution of crystal **CoL** at a concentration of 2.46×10^{-4} mol/L. The peak of the spectrum centered at 370 nm. The solution was the same color as it showed in Figure 3 and Figure 8.

Figure S8. Changes in UV-vis spectrum of H_3L in DMSO/H₂O (50/1, v/v) solution (5 × 10⁻⁵ mol/L) upon successive addition of Co²⁺ (0-1.2 equiv). The concentration of the Co²⁺ in the solution above is 2.5 × 10⁻⁶, 4.9 × 10⁻⁶, 7.3 × 10⁻⁶, 9.6 × 10⁻⁶, 1.5 × 10⁻⁵, 2.0 × 10⁻⁵, 2.5 × 10⁻⁵, 3.0 × 10⁻⁵, 3.5 × 10⁻⁵, 4.0 × 10⁻⁵, 4.9 × 10⁻⁵, 4.9 × 10⁻⁵, 5.9 × 10⁻⁵ mol/L, respectively (The absorbance of the H₃L solution was defined as zero, the Co²⁺ was added as its perchlorate salt).

IR spectra

The IR spectrun of H_4L-NO_3 has a much stronger absorption at 1038 cm⁻¹, which is the specific peak of NO₃⁻, and the absorption of 1100 cm⁻¹ means there exists ClO₄⁻ in the complex. The strong absorption at 1655 cm⁻¹means there exists –NH in the H_3L , while the amide turned to be –NR in the complexes of Co-Ac-HL and CoL.

Figure S9. IR spectra of H₃L, H₄L-NO₃, H₄L-ClO₄.

Figure S10. IR spectra of H₃L, Co-Ac-HL, CoL.

Figure S11. ¹H NMR of (**CoL**, **2**). Comparing to the ¹H NMR of H_3L , the H of amide $\delta = 8.60$ (s, 3H) disappeared, all the other H experienced considerable highfield shifts, due to the six coordination of the center Co(III).

Figure S12. MS spectra of CoL (m/z = 691.4).

Figure S13. The interation between cobalt (II) salt and H₃L.