Electronic Supplementary Information (ESI)

Palladium dichloride adduct of *N*,*N*-bis-(diphenylphosphanylmethyl)-2aminopyridine: synthesis, structure and catalytic performance in the decarboxylative cross-coupling of 4-picolinic acid with aryl bromide

Run-Tian He,^{*a*} Jian-Feng Wang,^{*a*} Hui-Fang Wang,^{*a*} Zhi-Gang Ren^{*,*a*} and Jian-Ping Lang^{*,*a*,*b*}

^a College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou

215123, People's Republic of China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, Shanghai 210032, People's Republic of China

Figure S2 Positive-ion ESI-MS of the mixture of PdCl₂ and bdppmapy in DMA.

Figure S3. Observed (a and b) and calculated (c and d) isotopic patterns for the $[(bdppmapy)PdCl]^+$ cation and the $\{[(bdppmapy)PdCl] \cdot DMA\}^+$ cation in the mixture of PdCl₂ and bdppmapy in DMA.

Computational details

Density functional theory calculations were performed using Gaussian 09^1 with spin-restricted method. All structure optimizations were performed using the B3LYP functional² with the standard Pople all-electron basis set 6-31G(d) for all the atoms except for Pd and Br (which were described by LANL2DZ basis set and effective core potential implemented³). Frequency analysis was conducted at the same level of theory to verify the stationary points to be real minima and to get the zero-point energy (ZPE) corrections. Single-point calculations were performed with a large basis set, *i.e.* SDD for Pd, Br atoms and 6-311+G(2d,p) for the rest atoms. Basis set superposition errors were corrected for the [Cu]-[Pd] intermediates at the larger basis set level.

Figure S4 Structures and energies calculated by DFT (B3LYP/DZVP/TZVP). Gibbs free energy (G) in kcal·mol⁻¹.

Coordinates and energies of computed structures

TS for the Palladium(II)-Copper(I) complex (minimum)

E = -4252.15516689 a.u. ZPE correction = 0.683472 a.u. BSSE correction = 0.045704154 a.u.

Pd	-1.74898677	0.42778128	-0.57492605
Cu	3.85926514	-0.93702709	0.52641392
Br	-3.00200116	2.33125424	-1.79111236
Р	0.16741494	1.90651300	-0.29441828
Р	-0.85682280	-1.33279364	0.62216206
Ν	4.63776782	-2.59468544	-3.84916852
Ν	3.52373461	-0.34311675	2.28397727
Ν	1.29210977	0.18161653	1.60804962
С	-2.78392427	-0.52842940	4.16554334
С	-2.60423453	-1.69357130	4.91254616
С	-2.28678968	-0.44827792	2.86274625
С	-1.92057184	-2.77764844	4.35593493
С	-1.59959572	-1.53114374	2.29541546
С	-1.41687064	-2.69679517	3.05750391
С	-5.58196049	-2.40392746	-1.57593230
С	-5.52155348	-1.74788263	-0.34604662
С	4.84730487	-1.31001623	-3.53146203
С	4.63857617	-0.77653032	-2.25824650
С	-4.53775831	-2.24466738	-2.49015714
С	-4.42110599	-0.94096206	-0.02917816
С	4.20704866	-3.37955961	-2.85302779
С	4.17898513	-1.58029217	-1.19256206
С	3.97219730	-2.93041090	-1.55198712
С	-3.43833432	-1.44117775	-2.17371338
С	-3.37029027	-0.78254825	-0.93935975
С	-2.01968651	-5.08487948	-0.63140866
С	-1.97481905	-3.85293010	0.02062934
С	-1.55598586	4.72056139	2.16978056
С	-1.34835992	3.62223746	1.33116121
С	-0.97593731	-5.47632210	-1.47211020
С	-0.87289187	-2.99834281	-0.15067943
С	-0.50995796	5.60147078	2.44428635
С	-0.08722113	3.39236641	0.76393716
С	4.47984886	-0.39193919	3.23627809
С	4.25679738	0.01778096	4.54505642

С	2.99367546	0.49737401	4.89193890
С	2.29450473	0.12679215	2.62132828
С	2.20991986	2.11879629	-3.86676615
С	2.00077962	0.55107160	3.91446053
С	1.93186590	3.40966070	-4.32009928
С	1.70109141	1.68060216	-2.64423824
С	1.66494908	1.11658511	0.52419305
С	1.13665688	4.25740932	-3.54758959
С	0.95706781	4.29323647	1.03571410
С	0.95533642	-1.16129995	1.09860252
С	0.91642480	2.53523801	-1.85123228
С	0.74749451	5.38931743	1.87127535
С	0.62769996	3.82483689	-2.32227897
С	0.16158620	-3.38938412	-1.01743103
С	0.11031487	-4.62277874	-1.66837259
Н	-3.31912861	0.31646230	4.59024585
Н	-2.99874068	-1.75991854	5.92294019
Н	-2.43464232	0.45434686	2.27639237
Н	-1.78144950	-3.68876272	4.93167797
Н	-0.89359650	-3.54882482	2.63277947
Н	-6.43721607	-3.02806201	-1.82343547
Н	-6.33272833	-1.85568986	0.37132713
Н	5.20614547	-0.67315390	-4.34146283
Н	4.84148702	0.28324671	-2.11134327
Н	-4.57805768	-2.74239454	-3.45667066
Н	-4.40169737	-0.43412847	0.93163896
Н	4.04529699	-4.42768887	-3.11021487
Н	3.62727690	-3.65748864	-0.81754797
Н	-2.88036362	-5.73252348	-0.48987534
Н	-2.80760469	-3.55052889	0.64681168
Н	-2.64222579	-1.32103581	-2.90377917
Н	-2.54056975	4.89113463	2.59643890
Н	-2.17217099	2.96036966	1.08418959
Н	-1.01537139	-6.43528563	-1.98149246
Н	-0.67361791	6.45805443	3.09290268
Н	-0.00329091	4.48724386	-1.73988563
Н	5.44611968	-0.77391277	2.92471989
Н	5.05954733	-0.04155411	5.27211932
Н	2.81927183	1.44437277	-4.46185974
Н	2.78382936	0.82408644	5.90611531
Н	2.32511093	3.74896810	-5.27455086
Н	2.28517884	0.59705298	-0.22252487
Н	2.27680903	1.91514849	0.95125883
Н	1.93306451	4.15428601	0.57716566

Н	1 01805706	0.66465315	-2 32820608
11	1.710/37/0	0.00+05515	-2.52820078
Η	1.61533396	-1.42789116	0.25984985
Н	1.56177478	6.08146746	2.06898340
Н	1.12970896	-1.89401815	1.89167728
Н	1.01062391	-2.74167635	-1.21048590
Н	0.99997660	0.91015158	4.12376188
Н	0.92189493	-4.90663567	-2.33239146
Н	0.90197810	5.25786663	-3.90062276

TS for the palladium(II)-copper(I) complex (minimum)

E = -4252.135951 a.u. ZPE correction = 0.683225 a.u. BSSE correction = 0.061643586 a.u.

Pd	-0.07245200	0.59270400	-0.75022500
Cu	0.28799900	-1.92093100	0.23698100
Br	1.33257300	0.84205000	-2.92080700
Р	2.03991200	0.73175700	0.50794800
Р	-1.51973900	0.83713600	1.06404000
Ν	-0.91009800	-4.92783200	-3.26151700
Ν	0.79492800	-2.15545200	2.10119500
Ν	0.58632000	0.07083100	2.90291800
С	-3.88538600	4.07610600	2.11810400
С	-3.41833200	2.77103500	1.95267600
С	-3.20338300	5.14621700	1.53566500
С	-2.26395000	2.52057100	1.19356000
С	-2.05095700	4.90752800	0.78445600
С	-1.58502900	3.60317000	0.61203700
С	-1.42353600	-4.97665200	-2.02588100
С	-1.11943100	-4.05868600	-1.01817700
С	-0.22389000	-2.98854300	-1.24344100
С	-0.06803700	-3.91139400	-3.50068300
С	-5.17181600	-0.97811200	0.51375500
С	-5.13743500	-2.06816300	1.38550300
С	-4.08867400	-0.10358100	0.43255100
С	-4.01091300	-2.28034000	2.18012400
С	-3.96748400	0.88388500	-3.66397000
С	-3.50223000	-0.35871800	-3.23096200
С	-3.31600500	2.04387900	-3.24045200

С	-2.95224800	-0.30242400	1.23667100
С	-2.92578200	-1.40442700	2.10614700
С	-2.40270600	-0.44529100	-2.36877100
С	-2.20937800	1.96033700	-2.38722500
С	-1.75187400	0.71588200	-1.94044700
С	-0.65407700	0.80019400	2.77597600
С	0.28918200	-2.94822800	-2.55548300
С	5.64982700	-1.26905400	0.77514400
С	5.49899100	-2.29921000	-0.15825700
С	4.62171100	-0.34717500	0.96926000
С	4.45129900	3.82993500	-0.80079300
С	4.32034300	-2.40071800	-0.89709500
С	3.91217200	2.56133500	-0.58320900
С	3.90978600	4.94739700	-0.16406600
С	3.42685100	-0.44735100	0.23503600
С	3.28815800	-1.47850000	-0.70358700
С	2.82209900	2.38985800	0.28373600
С	2.81413100	4.79142800	0.68661200
С	2.27080300	3.52458200	0.90223800
С	1.80942800	0.67328100	2.39389600
С	0.93224400	-3.47782200	2.36600600
С	0.78187900	-4.01655300	3.63602900
С	0.57452100	-1.31733100	3.14047800
С	0.47425200	-3.15941600	4.69541600
С	0.38628700	-1.79383100	4.44398200
Н	-4.78452200	4.25467100	2.70177800
Н	-3.96416800	1.94816500	2.40382100
Н	-3.57146800	6.16068100	1.66262000
Н	-2.11725200	-5.79656300	-1.82975100
Н	-1.60559100	-4.19051000	-0.05126400
Н	-1.51959100	5.73340300	0.31947000
Н	-0.69720100	3.41940200	0.01288400
Н	-0.46110500	1.85294000	3.01126500
Н	-6.04020700	-0.80944900	-0.11658600
Н	-5.98121900	-2.75034300	1.44114100
Н	-4.82254100	0.94829600	-4.33266900
Н	-4.12879000	0.73000300	-0.25977500
Н	-3.98969000	-1.27256500	-3.56345600
Н	-3.97137200	-3.12690500	2.86019300
Н	-3.65765700	3.01938400	-3.58039200
Н	-2.06199400	-1.59571800	2.73402500
Н	-2.05293400	-1.41905000	-2.04728200
Н	1.85020000	1.70270700	2.76751100
 Н	-1.70442300	2.87461200	-2.09294000

Н	-1.37705200	0.43290500	3.51207700
Н	0.94688000	-2.14205400	-2.87320600
Н	0.33984000	-3.86045000	-4.51108700
Н	6.56998700	-1.17947200	1.34651900
Н	6.30248400	-3.01468800	-0.31189700
Н	5.29421800	3.94260700	-1.47700600
Н	4.76171300	0.46216900	1.68174900
Н	4.33543800	1.70587400	-1.09707300
Н	4.33225100	5.93362600	-0.33571200
Н	4.19669900	-3.19192100	-1.63097900
Н	2.65765700	0.14012700	2.83215600
Н	2.37958200	-1.55261700	-1.28893200
Н	2.37678300	5.65523800	1.18046100
Н	1.40048100	3.43548900	1.54676100
Н	1.15168900	-4.10716300	1.51024100
Н	0.89439000	-5.08512600	3.78453300
Н	0.34111100	-3.54389400	5.70245400
Н	0.20906400	-1.07978700	5.24117000

Reference:

- M. J. T. Frisch, G. W.; H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision C.01; *Gaussian, Inc.: Wallingford CT*, **2010**.
- (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. T. Lee, W. T. Yang and R. G. Parr, Phys Rev B, 1988, 37, 785.
- 3. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.

4-(2,4-Dimethoxyphenyl)-pyridine (4a):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.61 (s, 2H), 7.61 (d, J = 4.8 Hz, 2H), 7.34 (J = 8.4 Hz, 1H), 6.64 (J = 2.0 Hz, 1H), 6.60 (s, 1H), 3.87 (d, J = 11.2 Hz, 6H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 162.1, 158.0, 148.4, 147.1, 131.3, 124.5, 119.5, 105.4, 99.1, 55.6. MS (m/z) calcd. for C₁₃H₁₃NO₂: 215.25, found 215.26.

2-(2,4-dimethoxyphenyl)pyridine (4b):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.57 (d, *J* = 4.6 Hz, 1H), 7.88 (t, *J* = 9.7 Hz, 2H), 7.70 (td, *J* = 2.0, 7.4 Hz, 1H), 7.18 (ddd, *J* = 1.4, 4.8, 7.4 Hz, 1H), 6.65 (m, 2H), 3.88 (s, 3H), 3.85 (s, 3H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 163.1, 156.0, 148.7, 147.5, 131.3, 128.5, 119.5, 115.4, 99.1, 55.6. MS (*m*/*z*) calcd. for C₁₃H₁₃NO₂: 215.25, found 215.26.

4-(4-Methoxylphenyl)-pyridine (6a):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.60 (d, J = 6.0 Hz, 2H), 7.59 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 6.0 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 160.8, 150.2, 148.1, 130.5, 128.4, 121.3, 114.8, 55.6. MS (*m/z*) calcd. for C₁₂H₁₁ON: 185.08, found: 185.08.

4-(3-Methoxylphenyl)-pyridine (6b):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.66 (d, J = 6.0 Hz, 2H), 7.50 (d, J = 6.0 Hz, 2H), 7.40 (t, J = 8.0 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.15 (s, 1H), 6.99 (d, J = 8.0 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 160.2, 150.0, 148.5, 139.5, 130.2 121.8, 119.4, 114.4, 112.8, 55.4. MS (*m*/*z*) calcd. for C₁₂H₁₁ON: 185.08, found: 185.08.

4-(2-Methoxylphenyl)-pyridine (6c):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.62 (d, J = 6.0 Hz, 2H), 7.47 (d, J = 4.4 Hz, 2H), 7.38 (t, J = 8.0 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 156.6, 149.3, 146.6, 130.5, 130.2, 127.6, 124.4, 121.1, 111.5, 55.6. MS (*m/z*) calcd. for C₁₂H₁₁ON: 185.08, found: 185.08.

4-(2-Methylphenyl)-pyridine (6d):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.64 (d, J = 4.8 Hz, 2H), 7.27 (m, 5H), 7.19 (d, J = 7.2 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 149.9, 149.5, 139.0, 135.0, 130.7, 129.3, 128.4, 126.1, 124.3, 20.3. MS (*m*/*z*) calcd. for C₁₂H₁₀N: 168.08, found: 168.08.

4-(3-Methylphenyl)-pyridine (6e):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.61 (d, J = 6.0 Hz, 2H), 7.43 (m, 2H), 7.39 (s, 1H), 7.37 (s, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 150.0, 138.7, 137.9 129.7, 128.9, 127.6, 124.0, 121.5, 21.4. MS (m/z) calcd. for C₁₂H₁₁N: 169.09, found: 169.09.

4-(4-Methylphenyl)-pyridine (6f):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.64 (d, J = 6.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 6.0 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 150.2, 148.7, 139.6, 135.3, 130.1, 127.1, 121.7, 21.5. MS (*m/z*) calcd. for C₁₂H₁₁N: 169.09, found: 169.09.

4-(2,4,6-Trimethyl-phenyl)-pyridine (6g):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.68 (d, J = 5.6 Hz, 2H), 7.16 (t, J = 4.4 Hz, 2H), 6.96 (s, 2H), 2.34 (s, 3H), 1.99 (s, 6H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 150.6, 149.0, 137.8, 135.0, 128.4, 125.1, 21.1, 20.6, 14.2. MS (*m/z*) calcd. for C₁₄H₁₅N: 197.21, found: 197.20.

4-(3,5-Dimethylphenyl)-pyridine (6h):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.65 (d, J = 6.0 Hz, 2H), 7.50 (d, J = 6.0 Hz, 2H), 7.26 (s, 2H), 7.10 (s, 1H), 2.41 (s, 6H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 150.0, 148.8, 138.8, 138.1, 130.8, 124.9, 121.8, 21.4. MS (*m*/*z*) calcd. for C₁₃H₁₃N: 183.24, found: 183.24.

4-(4-Fluoro-phenyl)-pyridine (6i):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.66 (d, J = 6.0 Hz, 2H), 7.64 (dd, J = 5.6 Hz, 3.2 Hz, 2H), 7.43 (d, J = 6.0 Hz, 2H), 7.18 (t, J = 8.8 Hz, 2H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 164.7, 162.3, 150.1, 147.5, 134.2, 128.9, 128.8, 121.5, 116.3, 116.1. MS (m/z) calcd. for C₁₁H₈NF: 173.06, found: 173.06.

4-(Pyridin-4-yl)-benzonitrile (6j):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.72 (d, J = 5.6 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, H), 7.50 (d, J = 6.0 Hz, 2H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 150.5, 146.5, 142.6, 132.9, 127.8, 121.7, 118.4, 112.9. MS (*m/z*) calcd. for C₁₂H₈N₂: 180.07, found: 180.07.

4-(4-Trifluoromethylphenyl)-pyridine (6k):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.69 (d, J = 6.4 Hz, 2H), 7.72 (s, 4H), 7.49 (d, J = 6.0 Hz, 2H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 150.5, 147.0, 141.8, 131.3, 130.0, 127.5, 126.2, 126.1, 122.7, 121.8. MS (*m*/*z*) calcd. for C₁₂H₈NF₃: 223.06, found: 223.05.

4-Biphenyl-4-yl-pyridine (6l):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.69 (d, J = 6.0 Hz, 2H), 7.73 (s, 4H), 7.64 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 6.0 Hz, 2H), 7.48 (t, J = 7.2 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ = 149.4, 148.7, 142.3, 140.1, 136.5, 129.0, 127.9, 127.9, 127.5, 127.1, 121.7. MS (*m*/*z*) Calcd. for C₁₇H₁₃N₁: 231.11, found: 231.11.

4-(Naphthalen-1-yl)-pyridine (6m):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.73 (d, J = 5.2 Hz, 2H), 7.92 (m, 2H), 7.84 (d, J = 8.4 Hz, 1H), 7.48 (m, 6H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 149.7, 148.8, 137.3, 133.8, 130.7, 128.9, 128.6, 126.9, 126.7, 126.2, 125.4, 125.2, 125.1. MS (*m/z*) calcd. for C₁₅H₁₁N: 205.09, found: 205.08.

4-(Naphthalen-2-yl)-pyridine (6n):

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.75 (d, J = 6.4 Hz), 8.10 (m, 1H), 7.63 (m, 2H), 7.56 (d, J = 6.4 Hz, 2H), 7.46 (m, 5H). ¹³C NMR (400 MHz, CDCl₃, ppm): δ 149.7, 148.8, 137.3, 133.8, 130.7, 128.9, 128.6, 126.9, 126.7, 126.2, 125.4, 125.2, 125.1. MS (*m*/*z*) calcd. for C₁₅H₁₁N: 205.09, found: 205.09.

Figure S5. ¹H NMR, ¹³C NMR spectra of 4-(2,4-dimethoxyphenyl)-pyridine (**4a**).

Figure S6. ¹H NMR, ¹³C NMR spectra of 4-(4-methoxylphenyl)-pyridine (6a)

Figure S7. ¹H NMR, ¹³C NMR spectra of 4-(3-methoxylphenyl)-pyridine (6b)

Figure S8. ¹H NMR, ¹³C NMR spectra of 4-(2-methoxylphenyl)-pyridine (6c)

Figure S9. ¹H NMR, ¹³C NMR spectra of 4-(2-methylphenyl)-pyridine (6d)

(139.0 135.0 130.7 129.3 128.4 126.1 126.1 -149.9 -20.377.5 77.2 76.8 100 90 ppm -1

Figure S10. ¹H NMR, ¹³C NMR spectra of 4-(3-methylphenyl)-pyridine (6e)

Figure S11. ¹H NMR, ¹³C NMR spectra of 4-(4-methylphenyl)-pyridine (6f)

Figure S12. ¹H NMR, ¹³C NMR spectra of 4-(2,4,6-trimethyl-phenyl)-pyridine (6g)

Figure S13. ¹H NMR, ¹³C NMR spectra of 4-(3,5-dimethyl-phenyl)-pyridine (6h)

Figure S14. ¹H NMR, ¹³C NMR spectra of 4-(4-fluoro-phenyl)-pyridine (6i)

Figure S15. ¹H NMR, ¹³C NMR spectra of 4-(pyridin-4-yl)-benzonitrile (6j)

Figure S16. ¹H NMR, ¹³C NMR spectra of 4-(4-trifluoromethylphenyl)-pyridine (6k)

Figure S17. ¹H NMR, ¹³C NMR spectra of 4-biphenyl-4-yl-pyridine (6l)

Figure S18. ¹H NMR, ¹³C NMR spectra of 4-(naphthalen-1-yl)-pyridine (**6m**)

Figure S19. ¹H NMR, ¹³C NMR spectra of 4-(naphthalen-2-yl)-pyridine (6n)

