Supporting Information

Towards full-color-tunable emission of two component Eu(III)-doped Gd(III) coordination frameworks by variation of excitation light

Fengming Zhang,^{*ab*} Pengfei Yan,*^{*a*} Hongfeng Li,^{*a*} Xiaoyan Zou,^{*a*} Guangfeng Hou,^{*a*} and Guangming Li*^{*a*}

^{*a*} Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China. Fax: (+86) 451 8667 3647, E-mail: gmli_2000@163.com.

^b Harbin University of Science and Technology, Harbin 150080, P. R. China.

Fig. S1 Infrared spectra of H₄pztc, complexes 1–5 and Eu(III)-doped Gd(III) complexes.

Fig. S2 UV-vis spectra for H_4pztc , complexes 1–5 and Eu(III)-doped Gd(III) complexes in aqueous solution.

Fig. S3 TG–DSC curves of complex 1.

Fig. S4 TG–DSC curves of complex 2.

)SC(M

Fig. S5 TG–DSC curves of complex 3.

Fig. S6 TG–DSC curves of complex 4.

Fig. S7 TG–DSC curves of complex 5.

Fig. S8 Experimental X-ray powder patterns for microcrystalline samples 1–5, Eu(III)-doped Gd(III) complexes and simulated pattern.

Fig. S9 Luminescence decay profiles for complexes 2, 3, and 5.

Fig. S10 Phosphorescence spectrum of 4 at 77K

Fig. S11 Solid-state emission spectra of complex $Gd_{0.85}Eu_{0.15}$ with excitation wavelengths varying from 330 to 390 nm. Insert: CIE chromaticity diagram and color coordinates of the complex $Gd_{0.85}Eu_{0.15}$ under excitation wavelengths from 330 to 390 nm.

Fig. S12 Solid-state emission spectra of complex $Gd_{0.95}Eu_{0.05}$ with excitation wavelengths varying from 330 to 390 nm. Insert: CIE chromaticity diagram and color coordinates of the complex $Gd_{0.95}Eu_{0.05}$ under excitation wavelengths from 330 to 390 nm.

Fig. S13 Luminescence decay profiles for Gd_{0.90}Eu_{0.10} material from 330 to 390 nm (a–g, step size 10 nm).

Complexes	1	2	3	4	5
Formula	C ₈ N ₂ H ₈ O ₁₂ NaCe	$\mathrm{C_8N_2H_8O_{12}NaSm}$	$C_8N_2H_8O_{12}NaEu$	$C_8N_2H_8O_{12}NaGd\\$	C ₈ N ₂ H ₈ O ₁₂ NaTb
M/g mol ⁻¹	487.27	497.51	499.11	504.40	506.08
Color	Colourless	Colourless	Colourless	Colourless	Colourless
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pnma	Pnma	Pnma	Pnma	Pnma
a (Å)	15.414(3)	15.569(3)	15.306(3)	15.251(3)	15.147(3)
<i>b</i> (Å)	6.7180(13)	6.8533(13)	6.7260(13)	6.6990(13)	6.6763(13)
<i>c</i> (Å)	14.322(3)	14.397(3)	14.386(3)	14.382(3)	14.375(3)
$V(Å^3)$	1483.1(5)	1536.1(5)	1481.0(5)	1469.4(5)	1453.7(5)
Ζ	4	4	4	4	4
Dcalcd/g cm ⁻³	2.182	2.151	2.238	2.280	2.312
μ (mm ⁻¹)	3.167	3.917	4.333	4.612	4.965
F (000)	940	956	960	964	968
$R_1 \left[I > 2\sigma(I) \right]$	0.0693	0.0653	0.0695	0.0812	0.0700
$wR_2, [I > 2\sigma(I)]$	0.1897	0.1780	0.1746	0.2114	0.1721
R_1 , (all data)	0.0749	0.0707	0.0809	0.0922	0.0774
wR_2 , (all date)	0.1954	0.1819	0.1856	0.2219	0.1786
GOF on F^2	1.074	1.119	0.980	1.091	1.074

Table S1 Crystal data and structure refinement for complexes 1-5

Table S2 Bond lengths (Å) and angles (deg) for complex 1

Ce(1)-O(3)#1	2.414(9)	Ce(1)-O(3)#2	2.414(9)
Ce(1)-O(1)	2.417(11)	Ce(1)-O(6)	2.430(16)
Ce(1)-O(8)#3	2.440(18)	Ce(1)-O(8)	2.440(18)
Ce(1)-N(1)	2.549(11)	Ce(1)-O(4)#4	2.572(9)
Ce(1)-O(4)#5	2.572(9)		
N(1)-Ce(1)-O(4)#4	133.0(4)	O(3)#1-Ce(1)-O(6)	73.5(3)
O(1)-Ce(1)-N(1)	63.5(3)	O(3)#1-Ce(1)-O(8)	147.8(6)
O(1)-Ce(1)-O(4)#4	146.4(4)	O(3)#1-Ce(1)-O(8)#3	70.6(6)
O(1)-Ce(1)-O(6)	126.3(4)	O(3)#2-Ce(1)-O(4)#4	121.4(3)
O(1)-Ce(1)-O(8)	75.0(5)	O(4)#4-Ce(1)-O(4)#5	51.1(4)
O(3)#1-Ce(1)-N(1)	71.9(3)	O(6)-Ce(1)-N(1)	62.7(4)
O(3)#1-Ce(1)-O(1)	90.3(2)	O(6)-Ce(1)-O(4)#4	77.7(5)
O(3)#1-Ce(1)-O(3)#2	139.1(6)	O(6)-Ce(1)-O(8)	138.1(5)
O(3)#1-Ce(1)-O(4)#4	73.3(3)	O(8)#3-Ce(1)-O(8)	77.9(10)
O(8)-Ce(1)-O(4)#4	103.4(6)	O(8)-Ce(1)-N(1)	122.8(5)
O(8)-Ce(1)-O(4)#5	71.9(6)		

Symmetry transformations used to generate equivalent atoms: #1: -x, y + 1/2, -z + 1; #2: -x, -y - 1, -z + 1; #3: x, -y - 1/2, z; #4: x - 1/2, -y - 1/2, -z + 3/2; #5: x - 1/2, y, -z + 3/2.

Sm(1)-O(3)#1	2.468(7)	Sm(1)-O(8)	2.529(15)
Sm(1)-O(3)#2	2.468(7)	Sm(1)-O(4)#4	2.614(7)
Sm(1)-O(1)	2.474(9)	Sm(1)-O(4)#5	2.614(7)
Sm(1)-O(6)	2.514(14)	Sm(1)-N(1)	2.620(8)
Sm(1)-O(8)#3	2.529(15)		
O(8)-Sm(1)-O(4)#4	102.9(5)	O(1)-Sm(1)-N(1)	62.0(3)
O(3)#1-Sm(1)-O(4)#4	120.3(3)	O(3)#1-Sm(1)-O(8)	71.0(5)
O(1)-Sm(1)-O(6)	122.8(3)	O(3)#1-Sm(1)-N(1)	72.48(19)
O(8)-Sm(1)-N(1)	124.0(5)	O(8)-Sm(1)-O(4)#5	73.3(6)
O(4)#4-Sm(1)-N(1)	132.1(3)	O(3)#1-Sm(1)-O(4)#5	73.7(2)
O(6)-Sm(1)-O(8)	139.5(5)	O(3)#1-Sm(1)-O(6)	74.0(3)
O(3)#1-Sm(1)-O(3)#2	140.8(5)	O(8)#3-Sm(1)-O(8)	75.5(9)
O(3)#1-Sm(1)-O(8)#3	145.9(5)	O(1)-Sm(1)-O(8)	76.7(5)
O(1)-Sm(1)-O(4)#4	149.0(3)	O(6)-Sm(1)-O(4)#4	77.9(4)
O(4)#4-Sm(1)-O(4)#5	49.3(4)	O(3)#1-Sm(1)-O(1)	89.38(18)
O(6)-Sm(1)-N(1)	60.9(3)		

Symmetry transformations used to generate equivalent atoms: #1: -x, y + 1/2, -z + 1; #2: -x, -y - 1, -z + 1; #3: x, -y - 1/2, z; #4: x - 1/2, -y - 1/2, -z + 3/2; #5: x - 1/2, y, -z + 3/2.

Table S4 Bond lengths (Å) and angles (deg) for complex 3

Eu(1)-O(1)	2.393(11)	Eu(1)-O(3)#1	2.406(9)
Eu(1)-O(3)#2	2.406(9)	Eu(1)-O(6)	2.415(18)
Eu(1)-O(8)#3	2.45(2)	Eu(1)-O(8)	2.45(2)
Eu(1)-N(1)	2.552(11)	Eu(1)-O(4)#4	2.563(10)
Eu(1)-O(4)#5	2.563(10)		
O(8)-Eu(1)-O(4)#5	103.4(7)	O(1)-Eu(1)-N(1)	63.7(3)
O(3)#1-Eu(1)-O(4)#5	121.5(4)	O(3)#1-Eu(1)-O(8)	70.3(7)
O(8)-Eu(1)-N(1)	123.8(6)	O(8)-Eu(1)-O(4)#4	72.1(7)
O(1)-Eu(1)-O(6)	127.2(4)	O(3)#1-Eu(1)-N(1)	72.3(3)
N(1)-Eu(1)-O(4)#4	131.9(4)	O(3)#1-Eu(1)-O(4)#4	73.0(3)
O(6)-Eu(1)-O(8)	137.9(7)	O(3)#1-Eu(1)-O(6)	74.6(4)
O(3)#1-Eu(1)-O(3)#2	140.7(7)	O(1)-Eu(1)-O(8)	75.7(7)
O(3)#1-Eu(1)-O(8)#3	146.5(8)	O(6)-Eu(1)-O(4)#4	75.8(5)
O(1)-Eu(1)-O(4)#4	147.0(3)	O(8)#3-Eu(1)-O(8)	76.9(13)
O(4)#4-Eu(1)-O(4)#5	51.3(5)	O(1)-Eu(1)-O(3)#1	89.7(3)
O(6)-Eu(1)-N(1)	63.5(4)		

Symmetry transformations used to generate equivalent atoms: #1: -x, y + 1/2, -z + 1; #2: -x, -y - 1, -z + 1; #3: x, -y - 1/2, z; #4: x - 1/2, y, -z + 3/2; #5: x - 1/2, -y - 1/2, -z + 3/2.

	D 11 (1	(1) 1	1	(1)	· 1	
1 able 55	Bond lengths	(A) and	angles	(aeg) I	or comple	X 4

Gd(1)-O(1)	2.385(15)	Gd(1)-O(8)	2.43(3)
Gd(1)-O(6)	2.39(2)	Gd(1)-N(1)	2.533(13)
Gd(1)-O(3)#1	2.395(11)	Gd(1)-O(4)#4	2.558(12)
Gd(1)-O(3)#2	2.395(11)	Gd(1)-O(4)#5	2.558(12)
Gd(1)-O(8)#3	2.43(3)		
O(8)-Gd(1)-O(4)#4	103.1(7)	O(1)-Gd(1)-N(1)	63.8(4)
O(3)#1-Gd(1)-O(4)#4	122.1(4)	O(3)#1-Gd(1)-O(8)	71.0(8)
O(8)-Gd(1)-N(1)	123.9(7)	O(8)-Gd(1)-O(4)#5	71.6(7)
O(1)-Gd(1)-O(6)	127.1(6)	O(3)#1-Gd(1)-N(1)	71.7(3)
N(1)-Gd(1)-O(4)#4	132.1(4)	O(3)#1-Gd(1)-O(4)#5	73.3(4)
O(6)-Gd(1)-O(8)	137.9(8)	O(6)-Gd(1)-O(3)#1	74.2(4)
O(3)#1-Gd(1)-O(3)#2	139.4(7)	O(1)-Gd(1)-O(8)	75.7(7)
O(1)-Gd(1)-O(4)#4	146.5(4)	O(6)-Gd(1)-O(4)#4	76.4(6)
O(3)#2-Gd(1)-O(8)	147.1(9)	O(8)#3-Gd(1)-O(8)	76.8(15)
O(4)#4-Gd(1)-O(4)#5	51.8(6)	O(1)-Gd(1)-O(3)#1	89.6(3)
O(6)-Gd(1)-N(1)	63.4(5)		

Symmetry transformations used to generate equivalent atoms: #1: -x, y + 1/2, -z + 1; #2: -x, -y - 1, -z + 1; #3: x, -y - 1/2, z; #4: x - 1/2, -y - 1/2, -z + 3/2; #5: x - 1/2, y, -z + 3/2.

Table S6 Bond lengths (Å) and angles (deg) for complex 5

Tb(1)-O(1)	2.366(13)	Tb(1)-O(3)#1	2.377(10)
Tb(1)-O(3)#2	2.377(10)	Tb(1)-O(6)	2.387(19)
Tb(1)-O(8)#3	2.40(2)	Tb(1)-O(8)	2.40(2)
Tb(1)-N(1)	2.517(12)	Tb(1)-O(4)#4	2.538(11)
Tb(1)-O(4)#5	2.538(11)		
O(8)-Tb(1)-O(4)#4	101.5(7)	O(1)-Tb(1)-N(1)	64.1(4)
O(3)#1-Tb(1)-O(4)#4	122.1(4)	O(8)-Tb(1)-O(4)#5	70.1(7)
O(8)-Tb(1)-N(1)	125.3(6)	O(3)#1-Tb(1)-O(8)	71.2(7)
O(1)-Tb(1)-O(6)	128.0(5)	O(3)#1-Tb(1)-N(1)	71.9(3)
N(1)-Tb(1)-O(4)#4	132.3(4)	O(3)#1-Tb(1)-O(4)#5	73.2(4)
O(6)-Tb(1)-O(8)	137.1(7)	O(3)#1-Tb(1)-O(6)	74.4(3)
O(3)#1-Tb(1)-O(3)#2	139.8(6)	O(6)-Tb(1)-O(4)#4	76.1(5)
O(1)-Tb(1)-O(4)#4	146.2(4)	O(8)#3-Tb(1)-O(8)	76.3(13)
O(3)#1-Tb(1)-O(8)#3	147.0(8)	O(1)-Tb(1)-O(8)	76.8(6)
O(4)#4-Tb(1)-O(4)#5	51.8(5)	O(1)-Tb(1)-O(3)#1	89.9(3)
O(6)-Tb(1)-N(1)	63.9(5)		

Symmetry transformations used to generate equivalent atoms: #1: -x, y + 1/2, -z + 1; #2: -x, -y - 1, -z + 1; #3: x, -y - 1/2, z; #4: x - 1/2, -y - 1/2, -z + 3/2; #5: x - 1/2, y, -z + 3/2.