Electronic Supplementary Information

For

Syntheses, crystal structures and magnetic properties of a series of μ -phenoxo- $\mu_{1,1}$ -carboxylato- $\mu_{1,3}$ -carboxylato trinickel(II) compounds

Sagarika Bhattacharya, Sujit Sasmal, Luca Carrella, Eva Rentschler* and Sasankasekhar Mohanta*

Fig. S1 Crystal structure of $[Ni^{II}_{3}(L^{sal-pyr})_{2}(Propionate)_{4}]$ (1). All the hydrogen atoms are omitted for clarity. Symmetry code: A, 1 - x, -y, -z.

Fig. S2 Crystal structure of $[Ni^{II}_{3}(L^{sal-pip})_{2}(Propionate)_{4}]$ (**4**). All the hydrogen atoms are omitted for clarity. Symmetry code: A, 1 - x, 2 - y, 2 - z.

Fig. S3 Crystal structure of $[Ni^{II}_{3}(L^{sal-pip})_{2}(Benzoate)_{4}] \cdot CH_{2}Cl_{2}(5)$. All the hydrogen atoms and a dichloromethane molecule (solvent of crystallization) are omitted for clarity. Symmetry code: A, 0.5 - x, 0.5 - y, 1 - z.

Fig. S4 Crystal structure of $[Ni^{II}_{3}(L^{sal-mor})_{2}(Benzoate)_{4}]\cdot 3CH_{2}Cl_{2}$ (7). Three dichloromethane molecule (solvents of crystallization) and all the hydrogen atoms are omitted for clarity. Symmetry code: A, 1 - x, 2 - y, 1 - z.

Table S1 Selected bond lengths (Å) and bond angles (°) in the coordination environments of the metal centers in Compound 2. Symmetry codes A (for Unit-I): 1 - x, 1 - y, -z; B (for Unit-II): -x, 1 - y, 1 - z

2 (Unit-I)		2 (Unit-II)	
Ni1-01	2.007(6)	Ni3-06	2.005(5)
Ni1–O2	2.148(6)	Ni3-07	2.146(5)
Ni1–N1	1.992(8)	Ni3–N3	1.998(8)
Ni1–N2	2.157(9)	Ni3–N4	2.184(8)
Ni1–O3	2.183(6)	Ni3-08	2.182(6)
Ni1–O4	2.020(6)	Ni3-09	2.024(5)
Ni2-O1	2.114(6)	Ni4-06	2.071(5)
Ni2–O1A	2.114(6)	Ni4–O6B	2.071(5)
Ni2-O2	2.125(6)	Ni4-07	2.136(5)
Ni2–O2A	2.125(6)	Ni4–O7B	2.136(5)
Ni2-05	1.997(6)	Ni4-010	1.983(5)
Ni2–O5A	1.997(6)	Ni4-O10B	1.983(5)
Ni1…Ni2	3.051	Ni3…Ni4	3.066
N1-Ni1-O2	164.3(3)	N3-Ni3-O7	157.2(3)
N2-Ni1-O1	171.6(3)	N4-Ni3-O6	175.2(3)
O3-Ni1-O4	157.0(2)	08-Ni3-09	159.4(2)
N1-Ni1-N2	82.8(4)	N3-Ni3-N4	83.9(4)
N1-Ni1-O1	88.9(3)	N3-Ni3-O6	91.5(3)
N1-Ni1-O3	105.7(3)	N3-Ni3-O8	98.1(3)
N1-Ni1-O4	97.0(3)	N3-Ni3-O9	102.4(3)
N2-Ni1-O2	104.8(3)	N4-Ni3-O7	103.8(3)
N2-Ni1-O3	91.1(3)	N4-Ni3-O8	90.9(3)
N2-Ni1-O4	88.3(3)	N4-Ni3-O9	89.3(3)
01-Ni1-O2	83.4(2)	06-Ni3-07	81.0(2)
01-Ni1-O3	91.4(2)	O6-Ni3-O8	91.0(2)
01-Ni1-O4	92.5(2)	06-Ni3-09	90.5(2)
O2-Ni1-O3	61.0(2)	07-Ni3-08	60.8(2)
O2-Ni1-O4	97.0(2)	07-Ni3-09	99.2(2)
01-Ni2-O1A	179.999(1)	O6-Ni4-O6B	179.999(1)
O2–Ni2–O2A	179.998(1)	O7–Ni4–O7B	180.0
O5–Ni2–O5A	179.998(1)	O10-Ni4-O10B	179.999(1)
01–Ni2–O2	81.5(2)	06–Ni4–07	79.8(2)
01–Ni2–O2A	98.5(2)	O6-Ni4-O7B	100.2(2)
01–Ni2–O5	90.1(2)	O6-Ni4-O10	92.3(2)
01–Ni2–O5A	89.9(2)	O6-Ni4-O10B	87.7(2)
02–Ni2–O5	89.9(2)	O7–Ni4–O10	89.4(2)
02–Ni2–O5A	90.1(2)	O7B-Ni4-O10	90.6(2)
Ni1-O1-Ni2	95.5(3)	Ni3-06-Ni4	97.6(2)
Ni1-O2-Ni2	91.1(2)	Ni3-07-Ni4	91.45
Ni1…Ni2…Ni1A	180.00	Ni3…Ni4…Ni3B	180.00

Fig. S5 Fittings of the $\chi_M T$ vs *T* of $[Ni^{II}_3(L^{sal-pyr})_2(Benzoate)_4] \cdot CH_3 CN$ (**2**) between 2.0 and 300.0 K. The experimental data is shown as black circles and the red line corresponds to the theoretical values.

Fig. S6 Fittings of the $\chi_M T$ vs *T* of $[Ni^{II}_3(L^{sal-pip})_2(Acetate)_4] \cdot 2CH_3CN$ (**3**) between 2.0 and 300.0 K. The experimental data is shown as black circles and the red line corresponds to the theoretical values.

Fig. S7 Fittings of the $\chi_M T$ vs *T* of $[Ni^{II}_3(L^{sal-pip})_2(Propionate)_4]$ (4) between 2.0 and 300.0 K. The experimental data is shown as black circles and the red line corresponds to the theoretical values.

Fig. S8 Fittings of the $\chi_M T$ vs *T* of $[Ni^{II}_3(L^{sal-pip})_2(Benzoate)_4] \cdot CH_2Cl_2$ (**5**) between 2.0 and 300.0 K. The experimental data is shown as black circles and the red line corresponds to the theoretical values.

Fig. S9 Fittings of the $\chi_M T$ vs *T* of $[Ni^{II}_3(L^{sal-mor})_2(Propionate)_4]$ (6) between 2.0 and 300.0 K. The experimental data is shown as black circles and the red line corresponds to the theoretical values.

Fig. S10 The low-temperature magnetization of $[Ni^{II}_{3}(L^{sal-pyr})_{2}(Benzoate)_{4}]\cdot CH_{3}CN$ (2) obtained at the indicated applied dc fields. The symbols are experimental data, while the solid lines represent the calculated curves listed in the inset.

Fig. S11 The low-temperature magnetization of $[Ni^{II}_{3}(L^{sal-pip})_{2}(Acetate)_{4}]$ ·2CH₃CN (**3**) obtained at the indicated applied dc fields. The symbols are experimental data, while the solid lines represent the calculated curves listed in the inset.

Fig. S12 The low-temperature magnetization of $[Ni^{II}_{3}(L^{sal-pip})_{2}(Propionate)_{4}]$ (4) obtained at the indicated applied dc fields. The symbols are experimental data, while the solid lines represent the calculated curves listed in the inset.

Fig. S13 The low-temperature magnetization of $[Ni^{II}_{3}(L^{sal-pip})_{2}(Benzoate)_{4}]\cdot CH_{2}Cl_{2}$ (5) obtained at the indicated applied dc fields. The symbols are experimental data, while the solid lines represent the calculated curves listed in the inset.

Fig. S14 The low-temperature magnetization of $[Ni^{II}_{3}(L^{sal-mor})_{2}(Propionate)_{4}]$ (6) obtained at the indicated applied dc fields. The symbols are experimental data, while the solid lines represent the calculated curves listed in the inset.

.