Induced Circular Dichroism of Polyoxometalates via Electrostatic Encapsulation with Chiral Organic Cations

Yizhan Wang, Lei Shi, Yang Yang, Bao Li,* Lixin Wu*

State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University, Changchun 130012, P. R. China

*To whom correspondence should be addressed. E-mail: <u>wulx@jlu.edu.cn</u>.

Synthesis of chiral organic cations (R-, S-C₀, (R)- or (S)-N,N,N-trimethyl-1phenylethanaminium iodide): An amount of 0.1 mL of CH₃I was added to a solution of 0.15 mL of R- or S- N,N-dimethyl-1-phenylethylamine in 1 mL of methanol. The reaction mixture was kept under stirring at room temperature for 48 h. The iodide salt was precipitated from methanol by adding Et₂O, filtered, and washed with Et₂O. The precipitate was dried under vacuum, giving the products, R-C₀ and S-C₀. For R-C₀: ¹H NMR (500 MHz, DMSO-d₆, TMS, ppm): δ = 1.73 (3 H, d, J = 6.8 Hz), 2.99 (9 H, s), 4.82 (1 H, m), 7.52 (3 H, m), 7.61 (2 H, m). For S-C₀: ¹H NMR (500 MHz, DMSO-d₆, TMS, ppm): δ = 1.72 (3 H, d, J = 6.8 Hz), 2.98 (9 H, s), 4.77 (1 H, m), 7.52 (3 H, m), 7.60 (2 H, m). MALDI-TOF MS: m/z: 165.15.

Synthesis of chiral organic cation (R-C₅, (R)-N,N,N-trimethyl-5-oxo-5-(1-phenylethoxy)pentan-1-aminium bromide): A mixture of (R)-(+)-1-phenyl ethanol (1.0 g), 5-bromovaleric acid (1.23 g), N,N'-dicyclohexylcarbodiimide (2.11 g), and 4-dimethylaminopyridine in dry dichloromethane (50 mL) was stirred for 48 h with the exclusion of moisture at room temperature. The resulting mixture was filtered and the filtrate was then evaporated under the reduce pressure. The resulting was purified by column chromatography (20/1 of petroleum ether: ethyl acetate in volume ratio), giving the product of esterification. Then the mixture of esterification product (0.13 g) and trimethylamine (0.7 mL, 30% aqueous solution) in ethanol (50 mL) was refluxed for 48 h. The resulting mixture was evaporated under the reduce pressure. The residue was washed with diethyl ether (3 × 20 mL). Then the resulting solid was dissolved in 5 mL water, and extracted by dichloromethane three times (30 mL × 3). The organic phase was collected and evaporated under the reduce pressure, giving the chiral product R-C₅: ¹H NMR (500 MHz, DMSO-d₆, TMS, ppm): δ = 1.49 (3 H, d, J = 6.8 Hz), 1.53 (2 H, m), 1.68 (2 H, m), 2.43 (2 H, t), 3.01 (9 H, s), 3.28 (2 H, m), 5.82 (1 H, dd), 7.29–7.38 (5 H, m). MALDI-TOF MS: m/z: 265.10.

Synthesis of chiral organic cation $(R-C_{11}, (R)-N,N,N-trimethyl-11-oxo-11-(1-phenylethoxy)undecan-1-aminium bromide): A mixture of <math>(R)-(+)-1$ -phenyl ethanol (0.505 g), 11-bromoundecanoic acid (0.91 g), N,N'-dicyclohexylcarbodiimide (1.06 g), and 4-dimethylaminopyridine in dry dichloromethane (40 mL) was stirred for 48 h with the exclusion of moisture at room temperature. The resulting mixture was filtered and the filtrate was then

evaporated under the reduce pressure. The residue was purified by column chromatography (20/1 of petroleum ether/ethyl acetate in volume ratio), giving the product of esterification. Then the mixture of esterification product (0.13 g) and trimethylamine (0.5 mL, 30% aqueous solution) in ethanol (50 mL) was refluxed for 48 h and then evaporated under the reduce pressure. The residue was washed with diethyl ether (3 × 20 mL), giving the white solid R-C₁₁: ¹H NMR (500 MHz, DMSO-d₆, TMS, ppm): δ = 1.24 (12 H, m), 1.45 (3 H, d, J = 6.6 Hz),1.52 (2 H, m), 1.66 (2 H, m), 2.32 (2 H, t), 3.05 (9 H, s), 3.27 (2 H, m), 5.81 (1 H, dd), 7.35 (5 H, m). MALDI-TOF MS: m/z: 349.08.

Figure S1. IR spectra of P_5W_{30} ($K_{12.5}Na_{1.5}[NaP_5W_{30}O_{110}] \cdot nH_2O$) (bottom), R-BPEA (middle) and R-P₅W₃₀ (top) in KBr pellets.

Figure S2. ¹H NMR spectra of R-BPEA, R-P₅W₃₀ and R-EuP₅E₃₀ in DMSO-d₆.

Figure S3. ³¹P NMR spectra of R-P₅W₃₀ in CD₃CN.

Figure S4. UV-Vis spectrum of R-BPEA in CH₃CN.

Figure S5. CD spectra of R- and S-BPEA in CH₃CN at a) $c = 3 \times 10^{-4} \text{ mol } L^{-1}$, l = 1 mm; and b) $c = 3.8 \times 10^{-3} \text{ mol } L^{-1}$, l = 10 mm.

Figure S6. IR spectra of EuP_5W_{30} ($K_{12}[EuP_5W_{30}O_{110}] \cdot nH_2O$) (bottom), R-BPEA (middle) and R-EuP₅W₃₀ (top) in KBr pellets.

Figure S7. a) UV spectrum of R-EuP₅W₃₀ in CH₃CN and b) CD spectra of R-EuP₅W₃₀ and S-EuP₅W₃₀ in CH₃CN at $c= 1.9 \times 10^{-5}$ mol L⁻¹, l=1 mm.

Figure S8. IR spectra of SiW_{12} (H₄SiW₁₂O₄₀) (bottom), R-BPEA (middle) and R-SiW₁₂ (top) in KBr pellets.

Figure S9. IR spectra of P_2W_{18} (K₆ $P_2W_{18}O_{62}$) (bottom), R-BPEA (middle) and R-P₂ W_{18} (top) in KBr pellets.

Figure S10. IR spectra of P_8W_{48} (K₂₈Li₅H₇[$P_8W_{48}O_{184}$]·92H₂O) (bottom), R-BPEA (middle) and R- P_8W_{48} (top) in KBr pellets.

Figure S11. ¹H NMR spectra of R-BPEA, R-SiW₁₂, R-P₂W₁₈, R-PW₁₁, and R-P₈W₄₈ in DMSO-d₆.

Figure S12. IR spectra of P_2Mo_{18} ((NH₄)₆[$P_2Mo_{18}O_{62}$]·12H₂O) (bottom), R-BPEA (middle), and R-P₂Mo₁₈ (top) in KBr pellets.

Figure S13. ¹H NMR spectra of R-BPEA, R-PMo₁₂, and R-P₂Mo₁₈ in DMSO-d₆.

Figure S14. ${}^{31}P$ NMR spectra of P_2Mo_{18} and $R-P_2Mo_{18}$ in CD₃CN.

Figure S15. CD spectra of R-P₂Mo₁₈ and S-P₂Mo₁₈ a) in CH₃OH (c = 0.2 mg mL⁻¹, l = 1 mm); b) in solid KBr pellets (the blue line is the spectrum of KBr).

Figure S16. IR spectra of CoW_{12} (K₆ $CoW_{12}O_{40}$) (bottom), R-BPEA (middle) and R-CoW₁₂ (top) in KBr pellets.

Figure S17. IR spectra of $SiW_{11}Co (K_6SiW_{11}CoO_{39})$ (bottom), R-BPEA (middle) and R-SiW_{11}Co (top) in KBr pellets.

Figure S18. ¹H NMR spectra of R-BPEA, R-CoW₁₂ and R-SiW₁₁Co in DMSO-d₆.

Figure S19. UV-Vis spectra of a) R-CoW₁₂, b) R-SiW₁₁Co, and CD spectra of c) R-,S-CoW₁₂, d) R-,S-SiW₁₁Co in CH₃CN at $c = 0.2 \text{ mg mL}^{-1}$, l = 1 mm.

Figure S20. IR spectra of $P_8W_{48}V_{12}$ ($Na_{12}K_8H_4[K_8P_8W_{48}O_{184}(V_4V_2O_{12}(H_2O)_2)_2]$ ·ca.80H₂O) (bottom), R-BPEA (middle) and R-P₈W₄₈V₁₂ (top) in KBr pellets.

Figure S21. ¹H NMR spectra of R-BPEA and R-P₈W₄₈V₁₂ in DMSO-d₆.

Figure S22. IR spectra of P_5W_{30} ($K_{12.5}Na_{1.5}[NaP_5W_{30}O_{110}] \cdot nH_2O$) (bottom), R-C₀ (middle) and R-C₀-P₅W₃₀ (top) in KBr pellets.

Figure S23. ¹H NMR spectra of R-C₀ and R-C₀-P₅W₃₀ in DMSO-d₆.

Figure S24. IR spectra of P_5W_{30} (K_{12.5}Na_{1.5}[NaP₅W₃₀O₁₁₀]·nH₂O) (bottom), R-C₅ (middle) and R-C₅-P₅W₃₀ (top) in KBr pellets.

Figure S25. ¹H NMR spectra of R-C₅ and R-C₅-P₅W₃₀ in DMSO-d₆.

Figure S26. IR spectra of P_5W_{30} ($K_{12.5}Na_{1.5}[NaP_5W_{30}O_{110}] \cdot nH_2O$) (bottom), R-C₁₁ (middle) and R-C₁₁-P₅W₃₀ (top) in KBr pellets.

Figure S27. ¹H NMR spectra of R-C₁₁ and R-C₁₁-P₅W₃₀ in DMSO-d₆.

Figure S28. UV-Vis spectra of R-C₀-P₅W₃₀, R-C₅-P₅W₃₀, and R-C₁₁-P₅W₃₀ in CH₃CN.

Figure S29. CD spectra of R-C₀ and S-C₀ in CH₃CN at c = 0.04 mg mL⁻¹, l = 1 mm.

Figure S30. CD spectra of R-C₅ in CH₃CN at c= 0.2 mg mL⁻¹, l = 1 mm.

Figure S31. CD spectra of R-C₁₁ in CH₃CN at $c = 0.2 \text{ mg mL}^{-1}$, l = 1 mm.