Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Evidence of Cationic Mixing and Ordering in the Honeycomb Layer of

Li₄MSbO₆ (M(III) = Cr, Mn, Al, Ga) (S.G. C2/c) Oxides

Neha Bhardwaj, Akanksha Gupta and S. Uma*

Materials Chemistry Group, Department of Chemistry,

University of Delhi, Delhi-110007, India

List of tables and figures (Supporting information)

Table S1: Representative examples of oxides with rocksalt superstructures

Table S2: Comparison of the indexation*of the powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄CrSbO₆.

Table S3: Comparison of the indexation*of the powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄MnSbO₆.

Table S4: Comparison of the indexation*of the powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄FeSbO₆.

Table S5: Comparison of the indexation*of the powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄AlSbO₆.

Table S6: Comparison of the indexation*of the powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄GaSbO₆.

Table S7. Crystallographic (SCXRD) parameters of Li₄CrSbO₆.

Table S8. Anisotropic Displacement Parameters (SCXRD) of Li₄CrSbO₆.

Table S9. Selected bond distances for Li_4MSbO_6 (M = Cr, Mn, Ga).

Table S10. Cell Parameters (Space Group $P3_112$) of Ag₃LiMSbO₆ (M = Cr, Fe, Al, Ga) obtained from PXRD*.

Fig. S1. Powder X-Ray diffraction pattern of $\text{Li}_4\text{CrSbO}_6$ indexed using (a) *R-3m* subcell, (b) *P3*₁*12* supercell, (c) *C2/m* supercell, and (d) *C2/c* supercell; Red line, experimental data; green line, calculated profile; pink line, difference profile; vertical bars, Bragg positions.

Fig. S2. (a) Plot of SCXRD intensities derived of Li_4CrSbO_6 ; (b) simulated PXRD pattern using the solution obtained from SCXRD of Li_4CrSbO_6 ; (c) PXRD pattern measured for the bulk polycrystalline Li_4CrSbO_6 .

Fig. S3. (a) Diffuse reflectance spectra of Li_4MSbO_6 (M = Cr, Mn, Fe, Al, Ga) and (b) Photoluminescence spectra of Li_4CrSbO_6 and Li_4MnSbO_6 .

Fig. S4. Structure of Li_4MSbO_6 (M = (a) Cr (SCXRD), (b) Cr (PXRD), (c) Mn, (d) Ga) perpendicular to the honeycomb layers.

Fig. S5. PXRD patterns of $Ag_3LiMSbO_6$ where M = (a) Cr, (b) Mn, (c) Fe, (d) Al, (e) Ga.

Fig. S6. Diffuse reflectance spectra of $Ag_3LiMSbO_6$ (M = (a) Cr, (b) Fe, (c) Mn, (d) Al, (e)

Ga).

Stoichiometry	Compound (Isostructural analogues)	a (Å)	b (Å)	c (Å)	β (°)	<i>S.G</i> .	Ref.
ABO ₂	γ - LiFeO ₂	4.05		8.74		I41/amd	[1]
	$(LiMO_2; M = Sc, In$						
	$NaMO_2$; M = Gd, Eu, Sm, Nd)						
	$\alpha - NaFeO_2$	3.027(1)		16.12(2)		<i>R-3m</i>	[2]
	$(LiMO_2; M = Co, Mn, Ni, V, Cr)$						
A ₂ MXO ₄	Li ₂ ZrMgO ₄	4.209(1)		9.145(2)		I4 ₁ /amd	[3]
	$(Li_2MXO_4; M = Zr, Hf; X = Mn, Fe, Co, Ni, Cu, Zn)$						
A_2BO_3	Li ₂ TiO ₃	5.069(2)	8.799(7)	9. 7599(9)	100.1(1)	<i>C2/c</i>	[4]
	Li ₂ MnO ₃	4.9246(1)	8.5216(1)	5.0245(1)	109.398(1)	C2/m	[5]
	Li ₂ RuO ₃	5.0466(3)	8.7649(2)	5.9417(3)	124.495(3)	<i>C2/m</i>	[6]
A_3BO_4	Li ₃ RuO ₄	5.1057(1)	5.8545(1)	5.1062(1)	110.039(1)	P2/a	[7]
	$\alpha - Na_3BiO_4$	5.87(1)	6.69(6)	5.65 (0)	109.8	<i>P2/c</i>	[8]
A_5BO_6	Li ₅ ReO ₆	5.062(5)	8.738(8)	5.032(4)	110.29(6)	C2/m	[9]
$A_3M_2XO_6$	Li ₃ Ni ₂ SbO ₆	5.1828(2)	8.9677(3)	5.1577(2)	109.69(2)	C2/m	[10]
	$Li_3Cu_2SbO_6$	5.4659(1)	8.7272(2)	9.7807(3)	95.080(2)	<i>C2/c</i>	[11]
	$Li_3Zn_2SbO_6$	5.259(3)	9.036(7)	5.209(4)	110.49(3)	C2/m	[12]
	Li ₃ Ni ₂ BiO ₆	5.2581(4)	9.116(1)	5.1969(8)	109.33(1)	C2/m	[13] [12]
	$(Li_3Zn_2BiO_6)$						
	Na ₃ Mg ₂ SbO ₆	5.3285(1)	9.1908(1)	5.6711(1)	108.30(1)	C2/m	[14] [15]
$A_2M_2XO_6$	$(Na_3M_2SbO_6; M = Co, Cu, Zn)$ $Li_2Ni_2TeO_6$	5.8921(7)	8.599(1)	17.691(2)		Fddd:2	[16]
	$Li_2Cu_2TeO_6$	5.6435(7)	8.607(1)	5.3515(6)	115.222(2)	C2/m	[16]
	$Na_2Mg_2TeO_6$	5.253(1)		11.2603(2)		P6 ₃ 22	[15] [17]
	$(Na_2Co_2TeO_6)$						
	$Na_2Ni_2TeO_6$	5.2042(5)		11.1383(5)		P6 ₃ /mcm	[17]
	Na ₂ Cu ₂ TeO ₆	5.7059(6)	8.6751(9)	5.9380(6)	113.740(2)	C2/m	[18]
A ₃ MM'XO ₆	Li ₃ NiMgBiO ₆	5.2612(7)	9.097(1)	5.2212(6)	109.62(1)	C2/m	[13]
	$(Li_3NiMBiO_6; M = Cu, Zn)$						

 $\label{eq:stables} \textbf{Table S1}: Representative examples of oxides with rocksalt superstructures.$

A ₃ (LiMX)O ₆	Na ₃ LiFeSbO ₆	5.3274(2)	9.2049(4)	11.377(3)	108.47(1)	C2/c	[19]
	Li ₄ FeSbO ₆	5.1706(5)	8.9382(5)	5.1635(2)	109.49(1)	C2/m	[20]
	Li ₄ NiTeO ₆	5.1603(3)	8.8914(5)	5.1426(4)	110.209(3)	C2/m	[21]
	$(Li_4MTeO_6; M = Cu, Zn)$						

Table S2: Comparison of the indexation*of the powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄CrSbO₆.

					Li ₄ CrSb	06				
			C2/	'c					C2/m	
20 (obs)	h	k	l	20 (cal)	Δ2θ	h	k	l	20 (cal)	Δ2θ
18.46	0	0	2	18.3942	0.0725	0	0	1	18.4260	0.0407
20.14	0	2	0	20.0933	0.0556	0	2	0	20.0241	0.1159
21.00	-1	1	1	20.9527	0.0508	1	1	0	20.9390	0.0645
22.15	0	2	1	22.1255	0.0284					
23.56	1	1	1	23.5323	0.0338	-1	1	1	23.5000	0.0661
25.33	-1	1	2	25.3007	0.0324					
27.37	0	2	2	27.3717	0.0024	0	2	1	27.3420	0.0321
29.54	1	1	2	29.5419	0.0002					
31.92	-1	1	3	31.9258	-0.0005	1	1	1	31.9697	-0.0444
34.46	0	2	3	34.4948	-0.0348					
35.65	-1	3	1	35.6940	-0.0440	-2	0	1	35.5349	0.1151
37.28	0	0	4	37.2849	-0.0049	-1	3	1	37.2353	0.0447
40.77	-2	2	1	40.8128	-0.0463	-2	2	1	41.1220	-0.3520
42.63	-2	2	2	42.6502	-0.0142	2	2	0	42.6212	0.0088
43.28	2	0	2	43.2639	0.0258	-2	0	2	43.2233	0.0664
47.36	-2	0	4	44.3767	-0.0099	-1	3	2	47.4121	-0.0453
54.73	-3	1	1	54.7128	0.0172	-3	1	1	54.6628	0.0672
57.22	2	0	4	57.2586	-0.0306	-2	0	3	57.2425	-0.0225
Lattice parameter $a = 5.126(3); b = 8.838(7); c = 9.796(8); \beta = 100.05(9)^{\circ}$					a = 5.	129(35); <i>b</i>	=8.868(28); c = 5.112(4); β = 1	109.6(7)°	

* Celref software was used for indexing the PXRD pattern

					Li ₄ MnSbO	6				
			C2/c					(C2/m	
20 (obs)	h	k	l	20 (cal)	Δ2θ	h	k	l	2θ (cal)	Δ2θ
18.30	0	0	2	18.2821	0.0179	0	0	1	18.3189	-0.0189
20.13	0	2	0	20.1196	0.0104	0	2	0	20.0973	0.0327
20.36	1	1	0	20.3661	-0.0061					
21.04	-1	1	1	21.0423	-0.0023	1	1	0	20.9204	0.1131
22.13	0	2	1	22.1261	0.0039					
23.62	1	1	1	23.5915	0.0285	-1	1	1	23.5259	0.0941
25.29	-1	1	2	25.3238	-0.0338					
27.31	0	2	2	27.3147	-0.0047	0	2	1	27.3231	-0.0131
29.55	1	1	2	29.5277	0.0223					
31.84	-1	1	3	31.8692	-0.0292	1	1	1	31.7973	0.0427
34.35	0	2	3	34.3705	-0.0205					
35.79	-1	3	1	35.7799	0.0101	1	3	0	35.6789	0.1111
37.07	0	0	4	37.0516	0.0184	0	0	2	37.1282	-0.0582
37.42	-2	0	2	37.4121	0.0079					
41.03	-2	2	1	41.0421	-0.0121	-2	2	1	41.1846	-0.1546
43.36	2	0	2	43.3885	-0.0285	-2	0	2	43.2468	0.1132
47.44	-2	0	4	47.4181	0.0219	-1	3	2	47.4256	0.0144
50.03	0	4	3	50.0340	-0.0040					
55.16	1	5	0	55.1558	0.0042	-2	4	1	55.2551	-0.0951
57.16	-1	3	5	57.1668	-0.0068	-2	0	3	57.1815	-0.0215
58.55	-3	1	3	58.5409	0.0091					
Lattice parameter	<i>a</i> = 5	.091(2); b =	= 8.826(2); c	$s = 9.853(4); \beta =$	99.966(2)°	a = 5.129	p(30); b= 8.	836(18); c	$= 5.130(24); \beta = 10$	09.2(5)°

Table S3: Comparison of the indexation*of the powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄MnSbO₆.

					Li4FeSbC) ₆						
			C2.	/c					C2/m			
20 (obs)	h	k	l	20 (cal)	Δ2θ	h	k	l	20 (cal)	Δ2θ		
18.17	0	0	2	18.1816	-0.0116	0	0	1	18.11	0.06		
19.79	0	2	0	19.7241	0.0659	0	2	0	19.6954	0.0946		
20.68	-1	1	1	20.6194	0.0606	1	1	0	20.6308	0.0492		
23.23	1	1	1	23.2087	0.0213	-1	1	1	23.1483	0.0817		
26.94	0	2	2	26.9502	-0.0102	0	2	1	26.8795	0.0605		
31.5	-1	1	3	31.4659	0.0341	1	1	1	31.4415	0.0585		
35.05	-1	3	1	35.0553	-0.0053	-2	0	1	35.0389	0.0111		
36.64	-2	0	2	36.6369	0.0031	-1	3	1	36.6318	0.0082		
40.11	0	4	0	40.065	0.045	0	4	0	40.0048	0.1052		
40.52	2	2	0	40.5394	-0.0194	-2	2	1	40.5128	0.0072		
41.96	-2	2	2	41.9471	0.0129	2	2	0	41.9712	-0.0112		
42.64	-1	3	3	42.6414	-0.0014	1	3	1	42.5939	0.0461		
44.28	0	4	2	44.3251	-0.0451	0	4	1	44.2376	0.0424		
46.62	-2	0	4	46.6557	-0.0357	-1	3	2	46.6045	0.0155		
53.9	1	3	4	53.8993	0.0007	-1	1	3	53.8784	0.0216		
54.25	-1	5	1	54.2738	-0.0238	-2	4	1	54.2144	0.0356		
55.44	1	5	1	55.4554	-0.0154	0	4	2	55.4004	0.0396		
56.33	2	4	1	56.317	0.013	1	3	2	56.331	-0.001		
61.78	-3	3	1	61.7888	-0.0088	-3	3	1	61.7857	-0.0057		
64.93	-1	3	6	64.9193	0.0107	-3	3	2	64.9359	-0.0059		
Lattice parameter	Lattice parameter $a = 5.198(4); b = 8.994(3); c = 9.907(9); \beta = 100.2(1)^{\circ}$						$a = 5.197(7); b = 8.994(4); c = 5.192(7); \beta = 109.5(1)^{\circ}$					

Table S4: Comparison of the powder X-ray diffraction patterns indexation* in C2/m and C2/c space groups for Li₄FeSbO₆.

					Li ₄ AlSbC	6				
			C2/c					C2,	/m	
20 (obs)	h	k	l	2θ (cal)	Δ2θ	h	k	1	20 (cal)	Δ2θ
18.54	0	0	2	18.4965	0.0435	0	0	1	18.4567	0.0833
20.45	0	2	0	20.3743	0.0757	0	2	0	20.3737	0.0763
20.67	1	1	0	20.5747	0.0653					
21.32	-1	1	1	21.2875	0.0325	1	1	0	21.2902	0.0298
22.47	0	2	1	22.4033	0.0667					
23.92	1	1	1	23.8182	0.1018	-1	1	1	23.7958	0.1242
25.63	-1	1	2	25.6444	-0.0144					
27.64	0	2	2	27.6522	-0.0122	0	2	1	27.6245	0.0155
32.22	-1	1	3	32.2856	-0.0656	1	1	1	32.259	-0.039
34.91	0	2	3	34.7939	0.1161					
36.18	2	0	0	36.1552	0.0248	-2	0	1	36.1496	0.0304
37.4	1	1	3	37.3846	0.0154					
37.81	1	3	1	37.8418	-0.0318	-1	3	1	37.8264	-0.0164
41.44	0	4	0	41.4311	0.0089	0	4	0	41.4298	0.0102
41.87	2	2	0	41.8529	0.0171	-2	2	1	41.8477	-0.0077
43.77	2	0	2	43.7896	-0.0196	-2	0	2	43.7376	0.0324
45.76	0	4	2	45.7256	0.0344	0	4	1	45.7068	0.0532
47.86	1	3	3	47.9751	-0.1151	-1	3	2	47.9148	-0.0548
55.71	-3	1	1	55.698	0.012	-3	1	1	55.7035	0.0065
56.04	2	4	0	56.1394	-0.0994	-2	4	1	56.1344	-0.0944
57.64	0	0	6	57.6501	-0.0101	-2	0	3	57.6781	-0.0381
Lattice parameter	<i>a</i> = 5.0	38 (9); <i>b</i> =	8.7106(7	7); <i>c</i> = 9.727(1);	$\beta = 99.7(3)^{\circ}$	<i>a</i> = 5.03	7(1); <i>b</i> = 8.7	10(7); <i>c</i> = 5.0	$094(2); \beta = 109.4($	(3)°

Table S5: Comparison of the indexation*powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄AlSbO₆.

					Li₄GaSbO₄							
			C2/c			C2/m						
20 (obs)	h	k	l	20 (cal)	Δ2θ	h	k	l	2θ (cal)	Δ2θ		
18.26	0	0	2	18.2727	-0.0127	0	0	1	18.2623	-0.0023		
19.98	0	2	0	19.9988	-0.0188	0	2	0	19.9883	-0.0083		
20.21	1	1	0	20.2219	-0.0119							
20.88	-1	1	1	20.9017	-0.0217	1	1	0	20.8915	-0.0115		
22	0	2	1	22.0138	-0.0138							
23.45	1	1	1	23.4633	-0.0133	-1	1	1	23.4672	-0.0172		
25.18	-1	1	2	25.2017	-0.0217							
27.19	0	2	2	27.2178	-0.0278	0	2	1	27.2028	-0.0128		
29.4	1	1	2	29.4183	-0.0183							
31.73	-1	1	3	31.7642	-0.0342	1	1	1	31.7349	-0.0049		
34.25	0	2	3	34.2853	-0.0353							
35.51	-1	3	1	35.5515	-0.0415	-2	0	1	35.5412	-0.0312		
36.88	1	1	3	36.9094	-0.0294	-1	1	2	36.9098	-0.0298		
37.13	1	3	1	37.1825	-0.0525	-1	3	1	37.1732	-0.0432		
39.61	-1	1	4	39.6086	0.0014							
40.6	0	4	0	40.6416	-0.0416	0	4	0	40.6196	-0.0196		
41.07	2	2	0	41.1104	-0.0404							
41.71	0	4	1	41.7383	-0.0283							
42.5	-2	2	2	42.5425	-0.0425	2	2	0	42.5209	-0.0209		
43.08	2	0	2	43.1504	-0.0704	-2	0	2	43.1647	-0.0847		
43.57	2	2	1	43.6177	0.0477							
44.84	0	4	2	44.8972	-0.0572	0	4	1	44.8723	-0.0323		
46.26	-2	2	3	46.3206	-0.0606							
47.18	1	3	3	47.2356	-0.0556	-1	3	2	47.2261	-0.0461		
47.94	2	2	2	47.9899	-0.0499	-2	2	2	47.9983	-0.0583		
48.24	-1	1	5	48.287	-0.047							
49.75	0	4	3	49.8087	-0.0587							
51.68	-2	2	4	51.7381	-0.0581	2	2	1	51.6937	-0.0137		
54.59	-3	1	1	54.6506	-0.0606	-3	1	1	54.6463	-0.0563		
55.01	2	4	0	55.0722	-0.0622							
56.16	-2	4	2	56.1446	0.0154	-1	5	1	56.2299	-0.0699		
56.94	2	0	4	56.989	-0.049	-2	0	3	57.02	-0.08		
58.05	3	1	1	58.1062	-0.0562							
Lattice parameter	a = 5.13	807(1) <i>l</i>	b = 8.8794(2) $c = 9.8607($	(2) $\beta = 100.03(2)^{\circ}$	<i>a</i> = 5	.131(1)	<i>b</i> = 8.884(1)	c = 5.147(2)	$\beta = 109.3(3)^{\circ}$		

Table S6: Comparison of the indexation* of the powder X-ray diffraction patterns in C2/m and C2/c space groups for Li₄GaSbO₆.

Formula	$Li_{3}Li_{1,01}Cr_{0,985}Sb_{1,0}O_{6}$
Crystal system	Monoclinic
Space Group	<i>C2/c</i> (#15)
<i>a</i> [Å]	5.1368(12)
<i>b</i> [Å]	8.890(2)
<i>c</i> [Å]	9.809(3)
β [°]	99.93(2)
V [Å ³]	441.22(19)
Z	8
Molecular Weight	296.799
ρ calc [g/cm ³]	4.479
Morphology	Irregular
Colour	Light green
Dimensions (mm)	$0.14 \times 0.08 \times 0.05$
Temperature [°K]	293(2)
Wavelength [MoK _α][A°]	0.71073
Monochromator	Graphite
Scan mode	ωscan
Min/ Max Bragg angle [°]	4.22 / 28.88
hkl range	$-6 \rightarrow 6, -11 \rightarrow 12, -12 \rightarrow 13$
F(000)	540
μ (mm ⁻¹)	8.526
R _{int}	0.0485
R _{sigma}	0.0345
Absorption Correction	None
Refinement	F^2
No. of unique reflections	544
No. of reflections used	2930
Number of parameters	44
$\mathbf{R}[\mathbf{F}^2 > 2\sigma(\mathbf{F}^2)]$	0.0456
wR ₂	0.1139
Gof (S)	1.255
Extinction Coefficient	0.0022(7)
Δρ/e[Å ⁻³]	1.534/-0.929

 Table S7: Crystallographic (SCXRD) parameters of Li₄CrSbO₆

Anisotropic Displacement Parameters (SXRD)											
Atom	U_{11}	U_{22}	U_{33}	U_{12}	<i>U</i> ₁₃	U_{23}					
Li1	0.022(8)	0.020(8)	0.016(7)	-0.006(6)	0.002(6)	0.005(5)					
Li2	0.032(11)	0.026(11)	0.012(9)	0.005(8)	0.005(8)	-0.006(7)					
Li3/Sb1	0.0065(5)	0.0061(5)	0.0056(4)	0	0.0009(3)	0					
Li4/Cr1	0.0274(17)	0.037(2)	0.0106(14)	0	0.0015(12)	0					
Cr2/Li5/Sb2	0.0033(6)	0.0024(6)	0.0029(6)	0	0.0002(4)	0					

Table S8: Anisotropic Displacement Parameters (SCXRD) of Li₄CrSbO₆

Table S9: Selected bond distances for Li_4MSbO_6 (M = Cr, Mn, Ga).

Li ₄ MSbO ₆			Ν	M = Cr		M = Mn	BVS^*	M = Ga	BVS^*
Bond Length (Å)		SXRD	BVS*	PXRD	BVS*	•			
Li1	01	2.154(11)×1		1.930(11)×1		2.084(10)×1		1.891(10) ×1	
		2.186(12)×1		2.239(11)×1		$2.618(10) \times 1$		$2.291(11) \times 1$	
	O2	2.138(11)×1		2.315(11)×1		2.030(8)×1		$2.027(8) \times 1$	
		2.191(12)×1		2.101(9)×1		$1.821(10) \times 1$		2.030(12) ×1	
	O3	2.137(11)×1	1.0	2.255(10)×1	1.0	1.965(10)×1	1.0	2.366(8) ×1	1.0
		2.142(11)×1	0.93	2.109(9)×1	0.965	2.381(7)×1	1.18	2.388(11) ×1	1.034
Li2	01	2.201(5)×2		2.099(8)×2		2.435(2)×2		$2.358(7) \times 2$	
	O2	$2.154(5) \times 2$	1.0	2.135(11)×2	1.0	$2.078(4) \times 2$	1.0	$1.941(11) \times 2$	1.0
	O3	2.111(5)×2	0.94	2.003(10)×2	1.19	2.061(4)×2	0.93	$2.048(11) \times 2$	1.148
Sb1/Li3	01	1.997(5)×2		2.121(8)×2		1.769(3)×2		$1.842(8) \times 2$	
	O2	$1.991(5) \times 2$	4.0	$1.846(11) \times 2$	4.52#	$1.985(4) \times 2$	4.46	$2.154(12) \times 2$	4.76
	O3	1.996(5)×2	4.26	$1.859(10) \times 2$	5.25#	2.154(4)×2	5.50	$2.004(10) \times 2$	5.204
Li4/M1	01	2.060(5)×2		2.294(13)×2		2.460(6)×2		$2.101(14) \times 2$	
	O2	2.086(5)×2	2.06	2.113(9)×2	1.78#	1.985(3)×2	1.326	2.039(8) ×2	1.26
	O3	2.105(5)×2	1.74	2.239(12)×2	1.09#	2.008(6)×2	1.30	2.212(15) ×2	1.194
M2/Sb3/Li5	01	2.041(5)×2		1.962(11)×2		2.050(4)×2		2.015(11) ×2	
	O2	2.020(5)×2	2.9	2.081(11)×2	3.1	2.099(4)×2	3.033	2.238(11) ×2	2.94
	03	2.044(5)×2	2.72	2.106(10)×2	2.65	2.093(3)×2	1.90	1.970(8) ×2	2.467

* Expected BVS are shown in italics; # Difference possibly arising out of stacking faults.

 Compound
 a (Å)
 c (Å)

 Ag₃LiCrSbO₆
 5.27(1)
 18.63(6)

 Ag₃LiFeSbO₆
 5.33(8)
 18.77(2)

 Ag₃LiAlSbO₆
 5.27(1)
 18.65(6)

 Ag₃LiGaSbO₆
 5.287(0)
 18.774(1)

Table S10: Cell Parameters (Space Group $P3_112$) of Ag₃LiMSbO₆ (M = Cr, Fe, Al, Ga) obtained from PXRD.

Fig. S1. Powder X-Ray diffraction pattern of $\text{Li}_4\text{CrSbO}_6$ indexed using (a) *R-3m* subcell, (b) $P3_112$ supercell, (c) *C2/m* supercell, and (d) *C2/c* supercell; Red line experimental data; green line calculated profile; pink line difference profile; vertical bars, Bragg positions.

Fig. S2 (a) PXRD plot derived from the measured SCXRD intensities for Li_4CrSbO_6 ; (b) simulated PXRD pattern using the SCXRD solution of Li_4CrSbO_6 ; (c) PXRD pattern obtained for the bulk polycrystalline Li_4CrSbO_6 .

Fig. S3 (a) Diffuse reflectance spectra of Li_4MSbO_6 (M = Cr, Mn, Fe, Al, Ga) and (b) Photoluminescence spectra of Li_4CrSbO_6 and Li_4MnSbO_6 .

Fig. S4 Structure of Li_4MSbO_6 (M = (a) Cr (SCXRD), (b) Cr (PXRD), (c) Mn, (d) Ga) perpendicular to the honeycomb layers.

Fig. S5 PXRD patterns of $Ag_3LiMSbO_6$ for M = (a) Cr, (b) Mn, (c) Fe, (d) Al, (e) Ga. (* represents parent oxide).

Fig. S6 Diffuse reflectance spectra of $Ag_3LiMSbO_6$ (M = (a) Cr, (b) Fe, (c) Mn, (d) Al, (e) Ga).

REFERENCES

- [1] J. C. Anderson and M. Schirber, J. Phys. Chem. Solids, 1964, 25, 961.
- [2] B. Fuchs and S. Kemmler-Sack *Solid State Ionics*, 1994, **68**, 279.
- [3] M. Castellanos, A. R. West and W. B. Reid, Acta Cryst., 1985, C4, 1707.
- [4] M. Castellanos and A. R. West, J. Mater. Sci., 1979, 14, 450.
- [5] V. Massarotti, M. Bini, D. Capsoni, A. Altomare and A. G. G. Moliterni, J. Appl. Cryst., 1997, 30, 123.
- [6] Y. Miura, Y. Yasui, M. Sato, N. Igawa1 and K. Kakurai, J. Phys. Soc. Jpn., 2007, 76, 33705.
- [7] A. Alexander, P. D. Battle, J. C. Burley, D. J. Gallon, C. P. Grey and S. H. Kim, J. Mater. Chem., 2003, 13, 2612.
- [8] S. Vensky, L. Kienle, R. E. Dinnebier, A. S. Masadeh, S. J. .Billinge and M. Jansen, Z. Kristallogr., 2005, 220, 231.
- [9] L. R. Morss, E. H. Appelman, R. R. Gerz and D. Martin-Rovet, J. Alloys Comp., 1994, 203, 289.
- [10] E. A. Zvereva, M. A. Evstigneeva, V. B. Nalbandyan, O. A. Savelieva, S. A. Ibragimov, O. S. Volkova, L. I. Medvedeva, A. N. Vasiliev, R. Klingeler and B. Buechner, *Dalton Trans.*, 2012, 41, 572.
- [11] J. M. S. Skakle, R. M. A. Castellanos, S. T. Tovar and A. R. West, J. Solid StateChem., 1997, 131, 115.
- [12] C. Greaves and S. M. A. Katib, *Mater. Res. Bull.*, 1990, 25, 1175.
- [13] R. Berthelot, W. Schmidt, S. Muir, J. Eilertsen, L. Etienne, A. W. Sleight and M.A. Subramanian, *Inorg. Chem.*, 2012, **51**, 5377.
- [14] W. Schmidt, R. Berthelot, A.W. Sleight and M.A. Subramanian, J. Solid State Chem. 2013, 201, 178.
- [15] L. Viciu, Q. Huang, E. Morosan, H. W. Zandbergen, N. I. Greenbaum, T. McQueen and R. J. Cava, J. Solid State Chem., 2007, 180, 1060; V. V. Politaev, V. B. Nalbandyan, A. A. Petrenko, I. L. Shukaev, V. A.Volotchaev, B. S. Medvedev, J. Solid State Chem., 2010, 183, 684.
- [16] V. Kumar, A. Gupta and S. Uma, *Dalton Trans.*, 2013, **42**, 14992.
- [17] M. A. Evstigneeva, V. B. Nalbandyan, A. A. Petrenko, B. S. Medvedeva and A. A. Kataev, *Chem. Mater.*, 2011, 23, 1174.

- [18] J. Xu, A. Assoud, N. Soheilnia, S. Derakhshan, H. L. Cuthbert, J. E. Greedan, M. H. Whangbo and H. Kleinke, *Inorg. Chem.*, 2005, 44, 5042.
- W. Schmidt, R. Berthelot, L. Etienne, A. Wattiaux and M. A. Subramanian, <u>Mater.</u> <u>Res. Bull.</u>, 2014, <u>50</u>, 292.
- [20] E. A. Zvereva, O. A. Savelieva, Ya. D. Titov, M. A. Evstigneeva, V. B. Nalbandyan, C. N. Kao, J. -Y. Lin, I. A. Presniakov, A. V. Sobolev, S. A. Ibragimov, M. Abdel-Hafiez, Yu. Krupskaya, C. Jähne, G. Tan, R. Klingeler, B. Büchner and A. N. Vasiliev, *Dalton Trans.*, 2013, **42**, 1550.
- [21] V. Kumar, N. Bhardwaj, N.Tomar, V.Thakral and S. Uma, *Inorg. Chem.*, 2012, 51, 10471.