Electronic Supporting Information (ESI)

for

Doping cobalt into a [Zn_{7}] cluster-based MOF for tuning magnetic behaviours and inducing fluorescence signal mutation

Yun-Wu Li, ${ }^{\text {ab }}$ Sui-Jun Liu, ${ }^{\text {a }}$ Tong-Liang $\mathrm{Hu}^{\text {*a }}$ and Xian-He Bu ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, TKL of Metal- and Molecule-Based Material Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China.
${ }^{b}$ School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China.

[^0]
Experimental Section

Materials and methods.

All chemicals were commercially purchased and used as received.
Elemental analyses (C, H, and N) were performed on a Perkin-Elmer 240C analyzer (PerkinElmer, USA). Inductively coupled plasma (ICP) analysis was carried out on a Perkin-Elmer Optima 3300 DV spectrometer. The X-ray powder diffraction (XRPD) was recorded on a Rigaku D/Max-2500 diffractometer at $40 \mathrm{kV}, 100 \mathrm{~mA}$ for a Cu-target tube and a graphite monochromator. Simulation of the XRPD spectra were carried out by the single-crystal data and diffraction-crystal module of the Mercury (Hg) program available free of charge via the Internet at http://www.iucr.org. IR spectrum was measured in the range of $400-4000 \mathrm{~cm}^{-1}$ on a Tensor 27 OPUS FT-IR spectrometer using KBr pellets (Bruker, German). UV-vis spectrum was recorded at room temperature on a computer-controlled Jasco V-550 Spectrometer (JASCO Corp.) Fluorescence spectra were recorded at room temperature on a Varian Cary Eclipse fluorescence spectrometer (Varian, USA).

X-ray Crystallography.

The crystallographic data of Co-Zn-MOF were collected on a Rigaku SCX-mini diffractometer at 298(2) K with Mo-K α radiation $(\lambda=0.71073 \AA)$. The crystal data were solved by direct methods and refined by a full-matrix least-square method on F^{2} using the SHELXL-97 crystallographic software package. ${ }^{\text {S1 }}$ Zinc and cobalt atoms in Co-Zn-MOF were found from E maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. But zinc and cobalt atoms possess site-occupancy disorder in the same position which is confirmed by the inductively coupled plasma (ICP) analysis and magnetism measurements. The final refinement was performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F^{2}. The hydrogen atoms of organic ligands were added theoretically, riding on the concerned atoms and refined with fixed thermal factors, and those of OH groups were located in a difference map and were refined with an $\mathrm{O}-\mathrm{H}$ distance restraint of 0.85(1) A. Lattice water hydrogen atoms were not added in Co-Zn-MOF F. Further details of crystal data and structure refinement for Co-Zn-MOF were summarized as follows. Selected bond lengths of Co-Zn-MOF were given in Table S1. Full crystallographic data for Co-ZnMOF have been deposited with the CCDC (955704). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. ${ }^{\text {S2 }}$

Reference

S1 (a) G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.

S2 The checkcif program available at: http://journals.iucr.org/services/cif/checkcif.html.

Crystal data for Co-Zn-MOF: $\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{~N}_{24} \mathrm{O}_{9} \mathrm{Zn}_{5} \mathrm{Co}_{2}, \mathrm{Mr}=1535.85$; Trigonal, R-3c; $a=$ $13.988(2) \AA, b=13.988(2) \AA, c=47.981(10) \AA, \gamma=120^{\circ} ; V=8130(2) \AA^{3} ; Z=6 ; D_{\text {calc }}=1.880$ $\mathrm{Mg} / \mathrm{m}^{3} ; T=298(2) \mathrm{K} . ;$ Reflections collected/unique $=21852 / 1597, R_{\text {int }}=0.0545 ; R_{1}=0.0382$, $w R_{2}=0.0759(\mathrm{I}>2 \theta(\mathrm{I})) ; R_{1}=0.0444, w R_{2}=0.0783$ (all data) and $G O F=1.096$.

Crystal data for Zn-MOF: $\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{~N}_{24} \mathrm{O}_{9} \mathrm{Zn} \mathrm{n}_{7}, \mathrm{Mr}=1548.58$; Trigonal, R - $3 c$; $a=13.934$ (2) \AA, b $=13.934(2) \AA, c=48.052(10) \AA, \gamma=120^{\circ} ; V=8080(2) \AA^{3} ; Z=6 ; D_{\text {calc }}=1.910 \mathrm{Mg} / \mathrm{m}^{3} ; T=$ 293(2) K.; Reflections collected/unique $=24128 / 2065, R_{\text {int }}=0.1216 ; R_{1}=0.0507, w R_{2}=0.1109$ $(\mathrm{I}>2 \theta(\mathrm{I})) ; R_{1}=0.0785, w R_{2}=0.1231$ (all data) and $G O F=1.044$.

Figures in Supporting Information

Fig. S1 XRPD patterns for Co-Zn-MOF.

Fig. S2 IR spectrum of compound Co-Zn-MOF.

Fig. S3 The magnetic hysteresis loop at 2 K for Co-Zn-MOF.

Fig. S4 The $\chi_{\mathrm{M}}{ }^{-1}$ vs. T curve ($\mathbf{\nabla}$) for $\mathbf{C o - Z n}-\mathrm{MOF}$ (red solid line for the Curie-Weiss fitting).

Fig. S5 The χ_{M} vs. T curve ($\mathbf{\Delta}$) at 2-20 K for $\mathbf{C o}$-Zn-MOF.

Table S1 The selected bond lengths [\AA] and angles [${ }^{\circ}$] of compound Co-Zn-MOF.

Co-Zn-MOF (M=Co ${ }_{2 / 7} / \mathbf{Z n} \mathbf{n}_{5 / 7}$)			
$\mathrm{M}(1)-\mathrm{O}(2) \# 7$	1.961(6)	$\mathrm{M}(2)-\mathrm{O}(1) \# 1$	1.937(3)
$\mathrm{M}(1)-\mathrm{O}(2) \# 8$	1.961(6)	$\mathrm{M}(2)-\mathrm{O}(1)$	1.937(3)
$\mathrm{M}(1)-\mathrm{O}(2)$	1.961(6)	$\mathrm{M}(2)-\mathrm{N}(1) \# 1$	2.041(3)
$\mathrm{M}(1)-\mathrm{O}(1) \# 7$	1.961(3)	$\mathrm{M}(2)-\mathrm{N}(1)$	2.041(3)
$\mathrm{M}(1)-\mathrm{O}(1) \# 8$	1.961(3)	$\mathrm{M}(3)-\mathrm{O}(2) \# 2$	1.931(6)
$\mathrm{M}(1)-\mathrm{O}(1)$	1.961(3)	$\mathrm{M}(3)-\mathrm{O}(2) \# 3$	1.931(6)
$\mathrm{M}(3)-\mathrm{O}(2) \# 4$	1.931(6)	$\mathrm{M}(3)-\mathrm{N}(4)$	2.012(3)
$\mathrm{M}(3)-\mathrm{N}(4) \# 5$	2.012(3)	$\mathrm{O}(2)-\mathrm{M}(3) \# 3$	1.931(6)
$\mathrm{M}(3)-\mathrm{N}(4) \# 6$	2.012(3)	$\mathrm{O}(2)-\mathrm{M}(3) \# 3$	1.931(6)
$\mathrm{O}(2) \# 7-\mathrm{Zn}(1)-\mathrm{O}(2) \# 8$	20.3(4)	$\mathrm{O}(1) \# 1-\mathrm{Zn}(2)-\mathrm{O}(1)$	109.90(19)
$\mathrm{O}(2) \# 7-\mathrm{Zn}(1)-\mathrm{O}(2)$	20.3(4)	$\mathrm{O}(1) \# 1-\mathrm{Zn}(2)-\mathrm{N}(1) \# 1$	116.82(13)
$\mathrm{O}(2) \# 8-\mathrm{Zn}(1)-\mathrm{O}(2)$	20.3(4)	$\mathrm{O}(1)-\mathrm{Zn}(2)-\mathrm{N}(1) \# 1$	111.37(12)
$\mathrm{O}(2) \# 7-\mathrm{Zn}(1)-\mathrm{O}(1) \# 7$	96.1(3)	$\mathrm{O}(1) \# 1-\mathrm{Zn}(2)-\mathrm{N}(1)$	111.37(12)
$\mathrm{O}(2) \# 8-\mathrm{Zn}(1)-\mathrm{O}(1) \# 7$	113(3)	$\mathrm{O}(1)-\mathrm{Zn}(2)-\mathrm{N}(1)$	116.82(13)
$\mathrm{O}(2)-\mathrm{Zn}(1)-\mathrm{O}(1) \# 7$	113(3)	$\mathrm{N}(1) \# 1-\mathrm{Zn}(2)-\mathrm{N}(1)$	89.52(18)
$\mathrm{O}(2) \# 7-\mathrm{Zn}(1)-\mathrm{O}(1) \# 8$	113(3)	$\mathrm{O}(2) \# 2-\mathrm{Zn}(3)-\mathrm{O}(2) \# 3$	20.6(4)
$\mathrm{O}(2) \# 8-\mathrm{Zn}(1)-\mathrm{O}(1) \# 8$	96.1(3)	$\mathrm{O}(2) \# 2-\mathrm{Zn}(3)-\mathrm{O}(2) \# 4$	20.6(4)
$\mathrm{O}(2)-\mathrm{Zn}(1)-\mathrm{O}(1) \# 8$	113(3)	$\mathrm{O}(2) \# 3-\mathrm{Zn}(3)-\mathrm{O}(2) \# 4$	20.6(4)
$\mathrm{O}(1) \# 7-\mathrm{Zn}(1)-\mathrm{O}(1) \# 8$	111.07(9)	$\mathrm{O}(2) \# 2-\mathrm{Zn}(3)-\mathrm{N}(4) \# 5$	108(2)
$\mathrm{O}(2) \# 7-\mathrm{Zn}(1)-\mathrm{O}(1)$	113(3)	$\mathrm{O}(2) \# 3-\mathrm{Zn}(3)-\mathrm{N}(4) \# 5$	128.0(10)
$\mathrm{O}(2) \# 8-\mathrm{Zn}(1)-\mathrm{O}(1)$	113(3)	$\mathrm{O}(2) \# 4-\mathrm{Zn}(3)-\mathrm{N}(4) \# 5$	113(3)
$\mathrm{O}(2)-\mathrm{Zn}(1)-\mathrm{O}(1)$	96.1(3)	$\mathrm{O}(2) \# 2-\mathrm{Zn}(3)-\mathrm{N}(4) \# 6$	113(3)
$\mathrm{O}(1) \# 7-\mathrm{Zn}(1)-\mathrm{O}(1)$	111.07(9)	$\mathrm{O}(2) \# 3-\mathrm{Zn}(3)-\mathrm{N}(4) \# 6$	108(2)
$\mathrm{O}(1) \# 8-\mathrm{Zn}(1)-\mathrm{O}(1)$	111.07(9)	$\mathrm{O}(2) \# 3-\mathrm{Zn}(3)-\mathrm{N}(4)$	113(3)
$\mathrm{O}(2) \# 4-\mathrm{Zn}(3)-\mathrm{N}(4) \# 6$	128.0(10)	$\mathrm{O}(2) \# 4-\mathrm{Zn}(3)-\mathrm{N}(4)$	108(2)
$\mathrm{N}(4) \# 5-\mathrm{Zn}(3)-\mathrm{N}(4) \# 6$	101.61(10)	$\mathrm{N}(4) \# 5-\mathrm{Zn}(3)-\mathrm{N}(4)$	101.61(10)
$\mathrm{O}(2) \# 2-\mathrm{Zn}(3)-\mathrm{N}(4)$	128.0(10)	$\mathrm{N}(4) \# 6-\mathrm{Zn}(3)-\mathrm{N}(4)$	101.61(10)
$\begin{aligned} & \text { Symmetry transformations used to generate equivalent atoms: \#1: }-\mathrm{x}+4 / 3,-\mathrm{x}+\mathrm{y}+2 / 3,- \\ & \mathrm{z}+1 / 6 ; \quad \# 2: \mathrm{x}-\mathrm{y}, \mathrm{x},-\mathrm{z} ; \# 3:-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z} ; \# 4: \mathrm{y},-\mathrm{x}+\mathrm{y}+1,-\mathrm{z} ; \# 5:-\mathrm{y}+1, \mathrm{x}-\mathrm{y}+1, \mathrm{z} ; \# 6:-\mathrm{x}+\mathrm{y}, \\ & -\mathrm{x}+1, \mathrm{z} ; \# 7:-\mathrm{x}+\mathrm{y}+1,-\mathrm{x}+1, \mathrm{z} ; \# 8:-\mathrm{y}+1, \mathrm{x}-\mathrm{y}, \mathrm{z} . \end{aligned}$			

Table S2 The selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ of compound $\mathbf{Z n}-\mathbf{M O F}$.

	Zn-MOF parent		
$\mathrm{Zn}(1)-\mathrm{O}(2) \# 1$	$1.927(7)$	$\mathrm{Zn}(2)-\mathrm{N}(1)$	$2.035(4)$
$\mathrm{Zn}(1)-\mathrm{O}(1) \# 2$	$1.959(4)$	$\mathrm{Zn}(3)-\mathrm{O}(2)$	$1.886(7)$
$\mathrm{Zn}(1)-\mathrm{O}(1) \# 3$	$1.959(4)$	$\mathrm{Zn}(3)-\mathrm{N}(4)$	$2.005(4)$
$\mathrm{Zn}(1)-\mathrm{O}(1)$	$1.959(4)$	$\mathrm{Zn}(3)-\mathrm{N}(4) \# 5$	$2.005(4)$
$\mathrm{Zn}(2)-\mathrm{O}(1)$	$1.925(4)$	$\mathrm{Zn}(3)-\mathrm{N}(4) \# 6$	$2.005(4)$
$\mathrm{Zn}(2)-\mathrm{O}(1) \# 4$	$1.925(4)$	$\mathrm{Zn}(3)-\mathrm{H}(2)$	$2.050(10)$
$\mathrm{Zn}(2)-\mathrm{N}(1) \# 4$	$2.035(4)$	$\mathrm{O}(2)-\mathrm{Zn}(1) \# 1$	$1.927(7)$
$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{O}(1) \# 2$			
$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{O}(1) \# 3$	$107.93(13)$	$\mathrm{O}(1)-\mathrm{Zn}(2)-\mathrm{N}(1)$	$116.37(17)$

$\mathrm{O}(1) \# 2-\mathrm{Zn}(1)-\mathrm{O}(1) \# 3$	$110.97(12)$	$\mathrm{N}(1) \# 4-\mathrm{Zn}(2)-\mathrm{N}(1)$	$89.4(2)$
$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{O}(1)$	$107.93(13)$	$\mathrm{O}(2)-\mathrm{Zn}(3)-\mathrm{N}(4)$	$116.69(11)$
$\mathrm{O}(1) \# 2-\mathrm{Zn}(1)-\mathrm{O}(1)$	$110.97(12)$	$\mathrm{O}(2)-\mathrm{Zn}(3)-\mathrm{N}(4) \# 5$	$116.69(11)$
$\mathrm{O}(1) \# 3-\mathrm{Zn}(1)-\mathrm{O}(1)$	$110.97(12)$	$\mathrm{N}(4)-\mathrm{Zn}(3)-\mathrm{N}(4) \# 5$	$101.39(13)$
$\mathrm{O}(1)-\mathrm{Zn}(2)-\mathrm{O}(1) \# 4$	$110.6(2)$	$\mathrm{O}(2)-\mathrm{Zn}(3)-\mathrm{N}(4) \# 6$	$116.69(11)$
$\mathrm{O}(1)-\mathrm{Zn}(2)-\mathrm{N}(1) \# 4$	$111.38(16)$	$\mathrm{N}(4)-\mathrm{Zn}(3)-\mathrm{N}(4) \# 6$	$101.39(13)$
$\mathrm{O}(1) \# 4-\mathrm{Zn}(2)-\mathrm{N}(1) \# 4$	$116.37(17)$	$\mathrm{N}(4) \# 5-\mathrm{Zn}(3)-\mathrm{N}(4) \# 6$	$101.39(13)$
Symmetry transformations used to generate equivalent atoms: \#1:-x+4/3,-y+5/3,-z-1/3;			
$\# 2:-\mathrm{y}+1, \mathrm{x}-\mathrm{y}+1, \mathrm{z} ; \# 3:-\mathrm{x}+\mathrm{y},-\mathrm{x}+1, \mathrm{z} ; \# 4: \mathrm{x}-\mathrm{y}+2 / 3,-\mathrm{y}+4 / 3,-\mathrm{z}-1 / 6 ; \# 5:-\mathrm{x}+\mathrm{y}+1,-\mathrm{x}+2, \mathrm{z} ; \# 6:-$			
$\mathrm{y}+2, \mathrm{x}-\mathrm{y}+1, \mathrm{z}$.			

[^0]: *To whom correspondence should be addressed. E-mail: tlhu@nankai.edu.cn

