# **Electronic Supplementary Information**

### Two coordination polymers constructed from a multidentate carboxylic acid ligand with tertiary amine serve as acid-base catalysts for the synthesis of chloropropene carbonate from CO<sub>2</sub> under atmospheric pressure

Chao Chen,\*,ª Jun Zhang,ª Guanghua Li,<sup>b</sup> Pan Shen,ª Haichao Jin<sup>a</sup> and Ning Zhang\*,ª

<sup>a</sup>Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. China. Fax: +86 791 83969514; Tel: +86 791 83779427; E-mail: chaochen@ncu.edu.cn (C. Chen). nzhang.ncu@163.com (N. Zhang) <sup>b</sup>State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

Fig. S1 The structural formula of ligand H<sub>3</sub>pdcd



**Fig. S2** Infrared spectra of fresh and recovered **1** were obtained from KBr pellets on a Nicolet Impact 5700 FTIR spectrometer in the 4000–400 cm<sup>-1</sup> region. The strong absorption stretch at 1675 cm<sup>-1</sup> indicated that the H<sub>3</sub>pdcd ligands were partly deprotonated. The IR spectra of recovered **1** showed a new band at around 1796 cm<sup>-1</sup>, which was ascribed to the adsorbed carbonyl group of cyclic carbonate.



Fig. S3 PXRD patterns of simulated 2 from single-crystal X-ray data and as-synthesized 2.



Fig. S4 TGA curves for 1 (-) and 2 (---).



Fig. S5 FT-IR spectroscopy of adsorbed pyridine for compound 1.





Fig. S6 Chloropropene carbonate yield versus reaction time (a) and temperature (b) for 1.

Fig. S7 HRTEM images of the fresh (a) and recovered (b) samples of  ${\bf 1}$ 



(a)



| Compounds                                                              | 1                                                  | 2                                |
|------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|
| Empirical formula <sup>a</sup>                                         | C18 H24 Ni N2 O10                                  | C18 H24 Co N2 O10                |
| Formula weight                                                         | 487.10                                             | 487.32                           |
| Crystal system                                                         | Orthorhombic                                       | Orthorhombic                     |
| Space group                                                            | Cmcm                                               | Cmcm                             |
|                                                                        | a = 9.9158(2) Å                                    | a = 9.9021(7) Å                  |
| Unit cell dimensions (Å and °)                                         | <i>b</i> = 27.7237(5) Å                            | b = 27.824(2) Å                  |
|                                                                        | c = 7.45820(10) Å                                  | c = 7.5624(6) Å                  |
| Volume (ų)                                                             | 2050.28(6) Å <sup>3</sup>                          | 2083.6(3) Å <sup>3</sup>         |
| Ζ                                                                      | 4                                                  | 4                                |
| Density (calculated) (Mg/m <sup>3</sup> )                              | 1.578                                              | 1.554                            |
| Absorption coefficient (mm <sup>-1</sup> )                             | 1.006                                              | 0.882                            |
| F (000)                                                                | 1016                                               | 1012                             |
| Crystal size (mm)                                                      | 0.4 x 0.2 x 0.05                                   | 0.3 x 0.2 x 0.05                 |
| heta range for data collection                                         | 1.47 to 27.49 °                                    | 2.93 to 27.76 °                  |
|                                                                        | -12<=h<=12,                                        | -12<=h<=12,                      |
| Limiting indices                                                       | -31<=k<=35,                                        | -36<=k<=36,                      |
|                                                                        | -9<=1<=9                                           | -7<=l<=9                         |
|                                                                        | 9454 / 1339                                        | 9884 / 1384                      |
| Reflections collected / unique                                         | [R(int) = 0.0253]                                  | [R(int) = 0.0463]                |
| Completeness to theta = 27.49 for <b>1</b> ,<br>27.76 and for <b>2</b> | 99.8 %                                             | 99.2 %                           |
| Data / restraints / parameters                                         | 1339 / 35 / 141                                    | 1384 / 0 / 120                   |
| Goodness-of-fit on F <sup>2</sup>                                      | 1.067                                              | 1.072                            |
| Final R indices $[I>2\sigma(I)]^b$                                     | $R_1 = 0.0383$ , $wR_2 = 0.1200$                   | $R_1 = 0.0510, wR_2 = 0.1533$    |
| R indices (all data)                                                   | $R_1 = 0.0476$ , $wR_2 = 0.1422$                   | $R_1 = 0.0617$ , $wR_2 = 0.1654$ |
| Largest diff. peak and hole                                            | 0.723 and -0.470 e.Å $^{\text{-3}}$                | 0.922 and -0.884                 |
| <sup>a</sup> Did not calculate the hydrogen at                         | toms of guest DMF molecule due                     | to its disorder.                 |
| ${}^{b}R_{1}=\sum   F_{o} - F_{c}  /\sum  F_{o} . wR_{2}=\sum [$       | $w (F_o^2 - F_c^2)^2] / \sum [w (F_o^2)^2]^{1/2}.$ |                                  |

#### Table S1. Crystal Data and Structure Refinement for 1 and 2

Table S2. Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for 1

| atom  | x       | У       | Z         | <i>U</i> (eq)ª |  |
|-------|---------|---------|-----------|----------------|--|
| Ni(1) | 5000    | 0       | 10000     | 20(1)          |  |
| O(1)  | 4696(4) | 652(1)  | 8950(4)   | 32(1)          |  |
| O(2)  | 2076(3) | 4003(1) | 7500      | 51(1)          |  |
| O(3)  | 3770(3) | 4510(1) | 7500      | 50(1)          |  |
| O(4)  | 5000    | -378(1) | 7500      | 20(1)          |  |
| O(5)  | 7053(4) | -92(2)  | 10275(11) | 40(2)          |  |
| N(1)  | 5000    | 2912(1) | 7500      | 24(1)          |  |
| C(1)  | 5000    | 2393(2) | 7500      | 24(1)          |  |
| C(2)  | 5000    | 2148(1) | 9108(5)   | 36(1)          |  |
| C(3)  | 5000    | 1649(1) | 9101(5)   | 38(1)          |  |

| C(4)  | 5000     | 1397(2) | 7500     | 25(1)  |
|-------|----------|---------|----------|--------|
| C(5)  | 5000     | 851(2)  | 7500     | 26(1)  |
| C(6)  | 3864(3)  | 3191(1) | 7500     | 26(1)  |
| C(7)  | 4271(3)  | 3666(1) | 7500     | 24(1)  |
| C(8)  | 2517(15) | 2967(5) | 7920(9)  | 27(1)  |
| C(8') | 2520(30) | 2956(9) | 7500     | 27(1)  |
| C(9)  | 3292(4)  | 4069(1) | 7500     | 32(1)  |
| O(6)  | 5000     | 2965(4) | 2660(50) | 164(6) |
| N(2)  | 5000     | 3766(2) | 2500     | 56(2)  |
| C(10) | 4319(16) | 3363(6) | 2500     | 81(4)  |
| C(11) | 6548(17) | 3722(6) | 2500     | 89(4)  |

<sup>a</sup>U (eq) is defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

| Table | S3.   | Atomic    | Coordinates | (×104) | and | Equivalent | Isotropic | Displacement |
|-------|-------|-----------|-------------|--------|-----|------------|-----------|--------------|
| Param | eters | s (Ų×10³) | ) for 2     |        |     |            |           |              |

| •     | ,        |         |         |         |  |
|-------|----------|---------|---------|---------|--|
| atom  | x        | У       | Z       | U (eq)ª |  |
| Co(1) | 5000     | 0       | 10000   | 26(1)   |  |
| O(1)  | 4709(5)  | 653(1)  | 8931(5) | 38(2)   |  |
| O(2)  | 2069(3)  | 3995(1) | 7500    | 56(1)   |  |
| O(3)  | 3774(3)  | 4502(1) | 7500    | 48(1)   |  |
| O(4)  | 5000     | -391(1) | 7500    | 25(1)   |  |
| O(5)  | 7110(4)  | 0       | 10000   | 80(2)   |  |
| N(1)  | 5000     | 2909(2) | 7500    | 30(1)   |  |
| C(1)  | 5000     | 2390(2) | 7500    | 28(1)   |  |
| C(2)  | 5000     | 2146(1) | 9092(6) | 41(1)   |  |
| C(3)  | 5000     | 1649(1) | 9084(6) | 41(1)   |  |
| C(4)  | 5000     | 1397(2) | 7500    | 29(1)   |  |
| C(5)  | 5000     | 853(2)  | 7500    | 30(1)   |  |
| C(6)  | 3863(4)  | 3187(1) | 7500    | 31(1)   |  |
| C(7)  | 4275(4)  | 3660(1) | 7500    | 28(1)   |  |
| C(8)  | 2519(5)  | 2958(2) | 7500    | 62(2)   |  |
| C(9)  | 3289(4)  | 4061(1) | 7500    | 37(1)   |  |
| O(6)  | 5000     | 2950(4) | 2131    | 130(4)  |  |
| N(2)  | 5000     | 3750(3) | 2500    | 63(2)   |  |
| C(10) | 4288(18) | 3357(6) | 2500    | 94(5)   |  |
| C(11) | 6550(20) | 3727(7) | 2500    | 101(5)  |  |
| C(12) | 4473(17) | 4230(7) | 2500    | 103(5)  |  |

<sup>a</sup>U (eq) is defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

# Table S4 Selected bond lengths (Å) and angles (°) in 1.

| Ni(1)-O(1)#1 | 1.992(3) | C(6)-C(8')  | 1.48(3)   |
|--------------|----------|-------------|-----------|
| Ni(1)-O(1)#2 | 1.992(3) | C(6)-C(8)#6 | 1.506(14) |
| Ni(1)-O(1)   | 1.992(3) | C(6)-C(8)   | 1.506(14) |
| Ni(1)-O(1)#3 | 1.992(3) | C(7)-C(7)#5 | 1.447(7)  |

| Ni(1)-O(5)#1        | 2.063(4)   | C(7)-C(9)            | 1.479(4)  |
|---------------------|------------|----------------------|-----------|
| Ni(1)-O(5)#2        | 2.063(4)   | O(6)-C(10)#8         | 1.301(16) |
| Ni(1)-O(5)          | 2.063(4)   | O(6)-C(10)           | 1.301(16) |
| Ni(1)-O(5)#3        | 2.063(4)   | N(2)-C(10)           | 1.307(15) |
| Ni(1)-O(4)          | 2.1386(14) | N(2)-C(10)#8         | 1.307(15) |
| Ni(1)-O(4)#3        | 2.1386(14) | N(2)-C(12)#8         | 1.404(16) |
| O(1)-C(5)           | 1.252(4)   | N(2)-C(12)           | 1.404(16) |
| O(2)-C(9)           | 1.218(5)   | N(2)-C(11)#8         | 1.539(17) |
| O(3)-C(9)           | 1.312(4)   | N(2)-C(11)           | 1.539(17) |
| O(4)-Ni(1)#4        | 2.1386(14) | C(4)-C(3)#6          | 1.383(4)  |
| N(1)-C(6)#5         | 1.366(4)   | C(4)-C(5)            | 1.514(6)  |
| N(1)-C(6)           | 1.366(4)   | C(5)-O(1)#6          | 1.252(4)  |
| N(1)-C(1)           | 1.441(5)   | C(5)-O(1)#5          | 1.252(3)  |
| C(1)-C(2)#6         | 1.379(4)   | C(5)-O(1)#1          | 1.252(3)  |
| C(1)-C(2)           | 1.379(4)   | C(6)-C(7)            | 1.380(4)  |
| C(2)-C(3)           | 1.382(5)   | C(3)-C(4)            | 1.383(4)  |
|                     |            |                      |           |
| O(1)#1-Ni(1)-O(1)#2 | 180.00(7)  | O(1)#6-C(5)-C(4)     | 116.2(2)  |
| O(1)#2-Ni(1)-O(1)   | 162.6(2)   | O(1)#5-C(5)-C(4)     | 116.2(2)  |
| O(1)#1-Ni(1)-O(1)#3 | 162.6(2)   | O(1)#1-C(5)-C(4)     | 116.2(2)  |
| O(1)-Ni(1)-O(1)#3   | 180.00(7)  | O(1)-C(5)-C(4)       | 116.2(2)  |
| O(1)#1-Ni(1)-O(5)#1 | 107.51(17) | N(1)-C(6)-C(7)       | 107.4(3)  |
| O(1)#2-Ni(1)-O(5)#1 | 72.49(17)  | N(1)-C(6)-C(8')      | 119.5(10) |
| O(1)-Ni(1)-O(5)#1   | 90.09(17)  | C(7)-C(6)-C(8')      | 133.1(11) |
| O(1)#3-Ni(1)-O(5)#1 | 89.91(17)  | N(1)-C(6)-C(8)#6     | 119.9(6)  |
| O(1)#1-Ni(1)-O(5)#2 | 72.49(17)  | C(7)-C(6)-C(8)#6     | 130.8(6)  |
| O(1)#2-Ni(1)-O(5)#2 | 107.51(17) | N(1)-C(6)-C(8)       | 119.9(6)  |
| O(1)-Ni(1)-O(5)#2   | 89.91(17)  | C(7)-C(6)-C(8)       | 130.8(6)  |
| O(1)#3-Ni(1)-O(5)#2 | 90.09(17)  | C(6)-C(7)-C(7)#5     | 107.0(2)  |
| O(5)#1-Ni(1)-O(5)#2 | 180.0      | C(6)-C(7)-C(9)       | 122.0(3)  |
| O(1)#1-Ni(1)-O(5)   | 90.09(17)  | C(7)#5-C(7)-C(9)     | 131.0(2)  |
| O(1)#2-Ni(1)-O(5)   | 89.91(17)  | O(2)-C(9)-O(3)       | 119.9(3)  |
| O(1)-Ni(1)-O(5)     | 107.51(17) | O(2)-C(9)-C(7)       | 122.3(3)  |
| O(1)#3-Ni(1)-O(5)   | 72.49(17)  | O(3)-C(9)-C(7)       | 117.8(3)  |
| O(5)#1-Ni(1)-O(5)   | 161.7(3)   | O(6)#7-O(6)-C(10)#8  | 84.7(15)  |
| O(1)#1-Ni(1)-O(5)#3 | 89.91(17)  | O(6)#7-O(6)-C(10)    | 84.7(16)  |
| O(1)#2-Ni(1)-O(5)#3 | 90.09(17)  | C(10)-N(2)-C(12)#8   | 169.8(9)  |
| O(1)-Ni(1)-O(5)#3   | 72.49(17)  | C(10)#8-N(2)-C(12)#8 | 127.8(10) |
| O(1)#3-Ni(1)-O(5)#3 | 107.51(17) | C(10)-N(2)-C(12)     | 127.8(10) |
| O(5)#2-Ni(1)-O(5)#3 | 161.7(3)   | C(10)#8-N(2)-C(12)   | 169.8(9)  |
| O(5)-Ni(1)-O(5)#3   | 180.0      | C(10)#8-N(2)-C(11)#8 | 116.6(11) |
| O(1)#1-Ni(1)-O(4)   | 95.81(11)  | C(12)#8-N(2)-C(11)#8 | 115.5(10) |
| O(1)#2-Ni(1)-O(4)   | 84.19(11)  | C(12)-N(2)-C(11)#8   | 73.5(9)   |
| O(1)-Ni(1)-O(4)     | 95.81(11)  | C(10)-N(2)-C(11)     | 116.6(11) |

| O(1)#3-Ni(1)-O(4)   | 84.19(11)  | C(12)#8-N(2)-C(11)    | 73.5(9)   |
|---------------------|------------|-----------------------|-----------|
| O(5)#1-Ni(1)-O(4)   | 91.5(3)    | C(12)-N(2)-C(11)      | 115.5(10) |
| O(5)#2-Ni(1)-O(4)   | 88.5(3)    | C(11)#8-N(2)-C(11)    | 170.9(14) |
| O(5)-Ni(1)-O(4)     | 91.5(3)    | O(6)#7-C(10)-N(2)     | 117.3(12) |
| O(5)#3-Ni(1)-O(4)   | 88.5(3)    | O(6)-C(10)-N(2)       | 117.3(12) |
| O(1)#1-Ni(1)-O(4)#3 | 84.19(11)  | O(6)#7-C(10)-C(11)#8  | 169.3(15) |
| O(1)#2-Ni(1)-O(4)#3 | 95.81(11)  | O(6)-C(10)-C(11)#8    | 169.3(15) |
| O(1)-Ni(1)-O(4)#3   | 84.19(11)  | C(11)#8-C(10)-C(10)#8 | 130.8(10) |
| O(1)#3-Ni(1)-O(4)#3 | 95.81(11)  | C(10)#8-C(11)-C(12)#8 | 103.4(14) |
| O(5)#1-Ni(1)-O(4)#3 | 88.5(3)    | C(12)#8-C(12)-C(11)#8 | 125.9(8)  |
| O(5)#2-Ni(1)-O(4)#3 | 91.5(3)    | C(2)-C(1)-N(1)        | 119.5(2)  |
| O(5)-Ni(1)-O(4)#3   | 88.5(3)    | C(1)-C(2)-C(3)        | 119.3(3)  |
| O(5)#3-Ni(1)-O(4)#3 | 91.5(3)    | C(2)-C(3)-C(4)        | 120.5(3)  |
| O(4)-Ni(1)-O(4)#3   | 180.0      | C(3)-C(4)-C(3)#6      | 119.4(4)  |
| O(1)#1-O(1)-C(5)    | 76.04(18)  | C(3)-C(4)-C(5)        | 120.3(2)  |
| O(1)#1-O(1)-Ni(1)   | 81.28(11)  | C(3)#6-C(4)-C(5)      | 120.3(2)  |
| C(5)-O(1)-Ni(1)     | 134.8(3)   | O(1)#6-C(5)-O(1)#5    | 27.9(4)   |
| Ni(1)-O(4)-Ni(1)#4  | 121.36(14) | O(1)#6-C(5)-O(1)#1    | 127.5(5)  |
| O(5)#2-O(5)-Ni(1)   | 80.87(14)  | O(1)#5-C(5)-O(1)#1    | 119.5(4)  |
| C(6)#5-N(1)-C(6)    | 111.2(4)   | O(1)#6-C(5)-O(1)      | 119.5(4)  |
| C(6)#5-N(1)-C(1)    | 124.42(19) | O(1)#5-C(5)-O(1)      | 127.5(5)  |
| C(6)-N(1)-C(1)      | 124.42(19) | C(2)#6-C(1)-N(1)      | 119.5(2)  |
| C(2)#6-C(1)-C(2)    | 120.9(4)   |                       |           |

Symmetry transformations used to generate equivalent atoms: #1-x+1,y,z; #2 x,-y,-z+2; #3 -x+1,-y,z+2; #4 -x+1,-y,z-1/2; #5 -x+1,y,-z+3/2; #6 x,y,-z+3/2; #7 x,y,-z+1/2; #8 -x+1,y,-z+1/2.

| Table 55 Selected D | Table 55 Selected bond lengths (A) and angles (°) in 2. |               |           |  |  |
|---------------------|---------------------------------------------------------|---------------|-----------|--|--|
| Co(1)-O(1)#1        | 2.009(3)                                                | C(4)-C(5)     | 1.514(6)  |  |  |
| Co(1)-O(1)          | 2.009(3)                                                | C(5)-O(1)#6   | 1.250(4)  |  |  |
| Co(1)-O(1)#2        | 2.009(3)                                                | C(5)-O(1)#5   | 1.250(4)  |  |  |
| Co(1)-O(1)#3        | 2.009(3)                                                | C(5)-O(1)#1   | 1.250(4)  |  |  |
| Co(1)-O(5)#3        | 2.089(4)                                                | C(6)-C(7)     | 1.377(5)  |  |  |
| Co(1)-O(5)          | 2.089(4)                                                | C(6)-C(8)     | 1.476(5)  |  |  |
| Co(1)-O(4)#3        | 2.1811(17)                                              | C(7)-C(7)#5   | 1.435(8)  |  |  |
| Co(1)-O(4)          | 2.1811(17)                                              | C(7)-C(9)     | 1.483(5)  |  |  |
| O(1)-C(5)           | 1.250(4)                                                | O(6)-C(10)#8  | 1.364(17) |  |  |
| O(2)-C(9)           | 1.222(6)                                                | O(6)-C(10)    | 1.364(17) |  |  |
| O(3)-C(9)           | 1.316(5)                                                | N(2)-C(10)    | 1.301(18) |  |  |
| O(4)-Co(1)#4        | 2.1811(17)                                              | N(2)-C(10)#8  | 1.301(18) |  |  |
| N(1)-C(6)#5         | 1.367(4)                                                | N(2)-C(12)#8  | 1.435(18) |  |  |
| N(1)-C(6)           | 1.367(4)                                                | N(2)-C(12)    | 1.435(18) |  |  |
| N(1)-C(1)           | 1.444(6)                                                | N(2)-C(11)#8  | 1.54(2)   |  |  |
| C(1)-C(2)           | 1.382(5)                                                | N(2)-C(11)    | 1.54(2)   |  |  |
| C(1)-C(2)#6         | 1.382(5)                                                | C(10)-C(11)#8 | 1.32(2)   |  |  |

| Table S5 Selected bond | lengths (Å | ) and ang | les (°) in 2. |
|------------------------|------------|-----------|---------------|
|------------------------|------------|-----------|---------------|

| C(2)-C(3)           | 1.381(5)   | C(10)-O(6)#7          | 1.364(17) |
|---------------------|------------|-----------------------|-----------|
| C(3)-C(4)           | 1.389(5)   | C(10)-C(10)#8         | 1.41(4)   |
| C(4)-C(3)#6         | 1.389(5)   | C(11)-C(10)#8         | 1.32(2)   |
|                     |            |                       |           |
| O(1)#1-Co(1)-O(1)#2 | 180.00(8)  | O(1)#6-C(5)-O(1)#1    | 127.2(5)  |
| O(1)-Co(1)-O(1)#2   | 163.5(3)   | O(1)#5-C(5)-O(1)#1    | 119.9(5)  |
| O(1)#1-Co(1)-O(1)#3 | 163.5(3)   | O(1)-C(5)-C(4)        | 116.4(2)  |
| O(1)-Co(1)-O(1)#3   | 180.00(8)  | O(1)#6-C(5)-C(4)      | 116.4(2)  |
| O(1)#1-Co(1)-O(5)#3 | 98.23(15)  | O(1)#5-C(5)-C(4)      | 116.4(2)  |
| O(1)-Co(1)-O(5)#3   | 81.77(15)  | O(1)#1-C(5)-C(4)      | 116.4(2)  |
| O(1)#2-Co(1)-O(5)#3 | 81.77(15)  | N(1)-C(6)-C(7)        | 107.3(3)  |
| O(1)#3-Co(1)-O(5)#3 | 98.23(15)  | N(1)-C(6)-C(8)        | 119.9(3)  |
| O(1)#1-Co(1)-O(5)   | 81.77(15)  | C(7)-C(6)-C(8)        | 132.8(4)  |
| O(1)-Co(1)-O(5)     | 98.23(15)  | C(6)-C(7)-C(7)#5      | 107.3(2)  |
| O(1)#2-Co(1)-O(5)   | 98.23(15)  | C(6)-C(7)-C(9)        | 121.5(3)  |
| O(1)#3-Co(1)-O(5)   | 81.77(15)  | C(7)#5-C(7)-C(9)      | 131.2(2)  |
| O(5)#3-Co(1)-O(5)   | 180.0      | O(2)-C(9)-O(3)        | 120.1(4)  |
| O(1)#1-Co(1)-O(4)#3 | 84.15(13)  | O(2)-C(9)-C(7)        | 122.5(4)  |
| O(1)-Co(1)-O(4)#3   | 84.15(13)  | O(3)-C(9)-C(7)        | 117.4(4)  |
| O(1)#2-Co(1)-O(4)#3 | 95.85(13)  | O(6)#7-O(6)-C(10)#8   | 78.21(16) |
| O(1)#3-Co(1)-O(4)#3 | 95.85(13)  | O(6)#7-O(6)-C(10)     | 78.21(15) |
| O(5)#3-Co(1)-O(4)#3 | 90.0       | C(10)#8-O(6)-C(10)    | 62.3(16)  |
| O(5)-Co(1)-O(4)#3   | 90.0       | C(10)-N(2)-C(10)#8    | 65.7(16)  |
| O(1)#1-Co(1)-O(4)   | 95.85(13)  | C(10)-N(2)-C(12)#8    | 168.5(10) |
| O(1)-Co(1)-O(4)     | 95.85(13)  | C(10)#8-N(2)-C(12)#8  | 125.8(11) |
| O(1)#2-Co(1)-O(4)   | 84.15(13)  | C(10)-N(2)-C(12)      | 125.8(11) |
| O(1)#3-Co(1)-O(4)   | 84.15(13)  | C(10)#8-N(2)-C(12)    | 168.5(10) |
| O(5)#3-Co(1)-O(4)   | 90.0       | C(10)-N(2)-C(11)#8    | 54.8(10)  |
| O(5)-Co(1)-O(4)     | 90.0       | C(10)#8-N(2)-C(11)#8  | 120.5(12) |
| O(4)#3-Co(1)-O(4)   | 180.00(15) | C(12)#8-N(2)-C(11)#8  | 113.7(11) |
| O(1)#1-O(1)-C(5)    | 76.7(2)    | C(12)-N(2)-C(11)#8    | 71.0(10)  |
| O(1)#1-O(1)-Co(1)   | 81.77(15)  | C(10)-N(2)-C(11)      | 120.5(12) |
| C(5)-O(1)-Co(1)     | 135.8(3)   | C(10)#8-N(2)-C(11)    | 54.8(10)  |
| Co(1)#4-O(4)-Co(1)  | 120.18(15) | C(12)#8-N(2)-C(11)    | 71.0(10)  |
| C(6)#5-N(1)-C(6)    | 110.9(4)   | C(12)-N(2)-C(11)      | 113.7(11) |
| C(6)#5-N(1)-C(1)    | 124.6(2)   | C(11)#8-N(2)-C(11)    | 175.3(16) |
| C(6)-N(1)-C(1)      | 124.6(2)   | N(2)-C(10)-C(11)#8    | 71.7(13)  |
| C(2)-C(1)-C(2)#6    | 121.2(5)   | N(2)-C(10)-O(6)       | 114.7(13) |
| C(2)-C(1)-N(1)      | 119.4(2)   | C(11)#8-C(10)-O(6)    | 166.3(9)  |
| C(2)#6-C(1)-N(1)    | 119.4(2)   | N(2)-C(10)-O(6)#7     | 114.7(13) |
| C(3)-C(2)-C(1)      | 119.2(4)   | C(11)#8-C(10)-O(6)#7  | 166.3(9)  |
| C(2)-C(3)-C(4)      | 120.6(4)   | N(2)-C(10)-C(10)#8    | 57.2(8)   |
| C(3)#6-C(4)-C(3)    | 119.2(5)   | C(11)#8-C(10)-C(10)#8 | 128.9(12) |
| C(3)#6-C(4)-C(5)    | 120.4(2)   | O(6)-C(10)-C(10)#8    | 58.9(8)   |

| C(3)-C(4)-C(5)        | 120.4(2) | O(6)#7-C(10)-C(10)#8  | 58.9(8)   |
|-----------------------|----------|-----------------------|-----------|
| O(1)-C(5)-O(1)#6      | 119.9(5) | C(10)#8-C(11)-N(2)    | 53.5(11)  |
| O(1)-C(5)-O(1)#5      | 127.2(5) | C(10)#8-C(11)-C(12)#8 | 105.3(16) |
| C(12)#8-C(12)-C(11)#8 | 125.9(9) | N(2)-C(11)-C(12)#8    | 51.8(9)   |
| N(2)-C(12)-C(11)#8    | 57.2(9)  | C(12)#8-C(12)-N(2)    | 68.7(7)   |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,z; #2 x,-y,-z+2; #3 -x+1,y,-z+2; #4 -x+1,-y,z-1/2; #5 -x+1,y,-z+3/2; #6 x,y,-z+3/2; #7 x,y,-z+1/2; #8 -x+1,y,-z+1/2.

| D–H…A            | d(D–H)    | $d(\mathbf{H}\cdots\mathbf{A})$ | Angle  | $d(\mathbf{D}\cdots\mathbf{A})$ |
|------------------|-----------|---------------------------------|--------|---------------------------------|
| Compound 1       |           |                                 |        |                                 |
| O(3)-H(3A)O(3)#1 | 0.94(2)   | 1.52(3)                         | 164(9) | 2.439 (7)                       |
| O(4)-H(4)O(2)#2  | 0.84(4)   | 1.84(4)                         | 177(4) | 2.681(4)                        |
| O(5)-H(5)O(3)#2  | 0.93(2)   | 2.10(3)                         | 145(4) | 2.898 (9)                       |
| Compound 2       |           |                                 |        |                                 |
| O(3)-H(3A)O(3)#5 | 0.95(2)   | 1.49(3)                         | 168(9) | 2.429(7)                        |
| O(4)-H(4)O(2)#9  | 0.77(4)   | 1.89(4)                         | 180(4) | 2.669(4)                        |
| O(5)-H(5)O(3)#9  | 0.924(19) | 1.95(2)                         | 171(5) | 2.866(3)                        |
| O(5)-H(5)O(2)#9  | 0.924(19) | 2.69(4)                         | 132(4) | 3.377(3)                        |

### Table S6. Hydrogen Bonds for 1 and 2

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2, z; #2 x+1/2,y-1/2,z; #3 -x+1, y, -z+3/2; #4 x+1/2, y-1/2, z.