Supporting Information

Donor-activated Alkali Metal Dipyridylamides: Co-complexation Reactions with Zinc Alkyls and Reactivity Studies with Benzophenone

Supporting Information

David R. Armstrong, Etienne V. Brouillet, Alan R. Kennedy, Jennifer. A. Garden,* Markus Granitzka, Robert E. Mulvey,* Joshua J. Trivett

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL. E-mail: <u>r.e.mulvey@strath.ac.uk</u>

Table of Contents

1. Additional Crystallographic Information	4
1.1 Crystallographic Data	4
1.2 Molecular Structure of 3	5
2. NMR Spectra	6
2.1 NMR Spectra of 2 , 3 , 4 and [(TEMPO)Zn(^t Bu)]	6
2.2 DOSY Analysis of 1 , 2 , 3 and 4	21
3. Evaluating the Effect of Substituting ^t Bu ₂ Zn by ^t BuLi as the <i>tert</i> -Butyl Source	23
4. Neutral zinc complexes containing dpa ligands	24
5. DFT Calculations	29
5.1 [(PMDETA)Na(dpa)] ₂ , 2_{calc}	29
5.2 [(H ₆ -TREN)Na(dpa)] <i>,</i> 4_{calc}	31
5.2.1 Total Energies (a.u.) and Relative Energies (kcal mol ⁻¹)	31
5.2.2 4_{calc}-A (<i>syn-syn</i>)	32
5.2.3 4_{calc}-B (syn-anti)	33
5.2.4 4_{calc}-C (anti-anti)	34
5.3 [Zn(dpa) ₂], 6_{calc}	35
5.3.1 Total Energies (a.u.) and Relative Energies (kcal mol ⁻¹)	35
5.3.2 [Zn(dpa) ₂], 6_{calc}-A	36
5.3.3 [Zn(dpa) ₂], 6_{calc}-B	37
5.3.4 [Zn(dpa) ₂], 6_{calc}-C	38
5.3.5 [Zn(dpa) ₂], 6_{calc}-D	38
5.3.6 [Zn(dpa) ₂], 6_{calc}-E	40
5.4 [(TMEDA)Na(dpa)] ₂ , 8_{calc}	41
6. Discussion of Dpa Bond Lengths and Bond Angles	42
7. Tables of Results	43
7.1 Donor Ligand Variation	43
7.1.1 Reactions with [(DMAP)Na(dpa)]	44
7.1.2 Reactions with [(TMEDA)Na(dpa)] ₂	45
7.1.3 Reactions with [(TMDAE)Na(dpa)] ₂	45
7.1.4 Reactions with [(PMDETA)Na(dpa)] ₂	46
7.1.5 Reactions with [(H ₆ -TREN)Na(dpa)]	47
7.1.6 Reactions with [(Me ₆ -TREN)Na(dpa)]	47
7.1.7 Reaction with [(TEMPO)Na(dpa)]	48
7.1.8 Reaction with [(PMDETA)Na(dpa)] ₂ and TEMPO	48
7.2 Variation of the Alkali Metal	49
7.3 Variation of the R Group: Reaction with Zn(CH ₂)Si(CH ₃) ₃	50
7.4 Variation of the Solvent System	51
7.5 Variation of the <i>tert</i> -butyl ligand source	53
References	54

Table of Figures

Figure S1 Molecular structure of 3 with thermal ellipsoids at 50% probability level5
Figure S2 ¹ H NMR Spectrum of [(PMDETA)Na(dpa)] ₂ (2)8
Figure S3 ¹³ C NMR Spectrum of [(PMDETA)Na(dpa)] ₂ (2)8
Figure S4 DOSY NMR Spectrum of [(PMDETA)Na(dpa)] ₂ (2) with ^t Bu ₂ Zn9
Figure S5 ¹ H NMR Spectrum of [(TMDAE)Na(dpa)] ₂ (3)9
Figure S6 ¹³ C NMR Spectrum of [(TMDAE)Na(dpa)] ₂ (3)10
Figure S7 DOSY NMR Spectrum of [(TMDAE)Na(dpa)] ₂ (3) with ^t Bu ₂ Zn10
Figure S8 ¹ H NMR Spectrum of [(H ₆ -TREN)Na(dpa)] (4)11
Figure S9 ¹³ C NMR Spectrum of [(H ₆ -TREN)Na(dpa)] (4)11
Figure S10 DOSY NMR Spectrum of [(H ₆ -TREN)Na(dpa)] (4) with ^t Bu ₂ Zn12
Figure S11 ¹ H NMR Spectrum of [(TEMPO)Zn(^t Bu)]12
Figure S12 ¹³ C NMR Spectrum of [(TEMPO)Zn(^t Bu)]13
Figure S13 Crude NMR Spectrum of 4-tert-butylbenzophenone and additional
by-products
Figure S14 Crude ¹ H NMR Spectrum of TEMPO- ^t Bu from the worked-up
reaction of [(PMDETA)Na(dpa)] ₂ , ^t Bu ₂ Zn and TEMPO14
Figure S15 Crude ¹³ C NMR Spectrum of TEMPO- ^t Bu from the worked-up
reaction of [(PMDETA)Na(dpa)] ₂ , ^t Bu ₂ Zn and TEMPO14
Figure S16 Reference ¹ H NMR Spectrum of commercially available dpaH in
C ₆ D ₆ solvent15
Figure S17 Reference ¹ H NMR Spectrum of commercially available dpaH in d ₈ -THF .15
Figure S18 Reference ¹ H NMR Spectrum of ^t Bu ₂ Zn in C ₆ D ₆ 16
Figure S19 Reference ¹ H NMR Spectrum of ^t Bu ₂ Zn in d ₈ -THF16
Figure S20 Reference ¹ H NMR Spectrum of TMEDA in C ₆ D ₆ 17
Figure S21 Reference ¹ H NMR Spectrum of TMEDA in d ₈ -THF17
Figure S22 ¹ H NMR Spectrum of [(PMDETA)Na(dpa)] in C ₆ D ₆ solvent18
Figure S23 ¹ H NMR Spectrum of [(PMDETA)Na(dpa)] with ^t Bu ₂ Zn in a 2:1 ratio18
Figure S24 ¹ H NMR Spectrum of [(TMDAE)Na(dpa)] in C ₆ D ₆ solvent19
Figure S25 ¹ H NMR Spectrum of [(TMDAE)Na(dpa)] with ^t Bu ₂ Zn in a 2:1 ratio19
Figure S26 ¹ H NMR Spectrum of [(H ₆ -TREN)Na(dpa)] in C ₆ D ₆ solvent20
Figure S27 ¹ H NMR Spectrum of [(H ₆ -TREN)Na(dpa)] with ^t Bu ₂ Zn in a 2:1 ratio20
Figure S28 Molecular structure of 626
Figure S29 Graphical representation of transition metal neutral dipyridylamine
and anionic dipyridylamide complexes27
Figure S30 Relative energies of DFT-modelled compounds 6calc-A-E28

1. Additional Crystallographic Information

1.1 Crystallographic Data

Table S1 Crystallographic data and refinement details for compounds 2, 3 and 6(CCDC reference numbers 992383–992385).

	2	3	6
Empirical	$C_{38}H_{62}N_{12}Na_2$	$C_{36}H_{56}N_{10}Na_2O_2$	$C_{20}H_{16}N_6Zn$
formula			
Mol. Mass	732.98	706.89	405.76
Crystal	Triclinic	orthorhombic	monoclinic
system			
Space group	P -1	P bc2 ₁	C 2/c
<i>a</i> (Å)	10.3495(13)	15.8743(8)	22.5759(4)
b (Å)	11.0583(11)	12.4146(7)	9.5830(2)
<i>c</i> (Å)	18.5966(18)	19.8597(11)	16.0729(3)
α (°)	101.113(8)	90	90
β (°)	96.726(9)	90	99.734(2)
γ (°)	90.084(9)	90	90
V (ų)	2073.4(4)	3913.8(3)	3427.23(12)
Ζ	2	4	8
λ (Å)	1.5418	0.71073	1.54178
Т (К)	123(2)	123(2)	123(2)
2θ _{max} (°)	140.0	56.0	144.1
Measured	17153	36891	10393
reflections			
Unique	17153	9425	3351
reflections			
R _{int}	а	0.0617	0.0186
Observed	8270	6569	3102
rflns [/>2σ(/)]			
GooF	1.167	1.014	1.074
<i>R</i> [on <i>F,</i> obs	0.1510	0.0769	0.0344
rflns only]			
wR [on F ² , all	0.4457	0.2266	0.1000
data]			
Largest diff.	0.862/-0.963	0.782/-0.671	0.565/-0.304
peak/hole/e			
Å-3			
Flack	-	0.2(5)	-

^a Samples of **2** were not single crystals. Data was processed as twinned with the two parts related by matrix -0.9813 0.0624 0.0535 0.0681 1.0029 0.0203 -0.1850 - 0.5925 -1.0129. The resulting HKLF 5 formatted file was used for refinement. BASF refined to 0.532(3).

1.2 Molecular Structure of 3

Figure S1 Molecular structure of **3** with thermal ellipsoids at 50% probability level. Hydrogen atoms and minor disordered components of TMDAE have been omitted for clarity. Selected bond lengths (Å) and bond angles (°): Na1-O2, 2.430(3); Na1-N3, 2.501(3); Na1-N6, 2.488(3); Na1-N7, 2.535(4); Na1-N8, 2.680(4); Na1-N9, 2.538(3); Na2-O1, 2.326(16); Na2-N1, 2.434(4); Na2-N5, 2.470(4); Na2-N6, 2.454(3); Na2-N8, 2.752(4); Na2-N9, 2.496(3); O2-Na1-N3, 71.06(10); O2-Na1-N6, 111.63(11); O2-Na1-N7, 102.93(11); O2-Na1-N8, 100.24(11); O2-Na1-N9, 139.81(11); N3-Na1-N6, 149.14(12); N3-Na1-N7, 94.91(12); N3-Na1-N8, 113.85(12); N3-Na1-N9, 93.47(11); N6-Na1-N7, 54.23(11); N6-Na1-N8, 96.23(12); N6-Na1-N9, 100.53(11); N7-Na1-N8, 147.69(12); N7-Na1-N9, 115.49(11); N8-Na1-N9, 51.39(10); O1-Na2-N1, 72.9(4); O1-Na2-N5, 101.4(4); O1-Na2-N6, 154.53(15); N1-Na2-N8, 163.7(4); O1-Na2-N9, 102.0(4); N1-Na2-N5, 100.85(14); N1-Na2-N6, 154.53(15); N1-Na2-N8, 93.33(14); N1-Na2-N9, 101.32(13); N5-Na2-N6, 55.34(12); N5-Na2-N8, 89.66(12); N5-Na2-N9, 135.37(13); N6-Na2-N9, 102.68(11); N6-Na2-N8, 95.21(12); N8-Na2-N9, 50.87(10); Na2-N6-Na1-N9, 15.281(2)[°]; Na1-N6-Na2-N8, 35.359(2)[°].

2. NMR Spectra

2.1 NMR Spectra of 2, 3, 4 and [(TEMPO)Zn(^tBu)]

Table S2 Comparison of ¹H (400.03 MHz, 300 K) and ¹³C{H} (100.59 MHz, 300 K) NMR shifts in d_8 -THF solution for dpa(H) and its sodium derivatives [(PMDETA)Na(dpa)]₂ (**2**), [(TMDAE)Na(dpa)]₂ (**3**), [(H₆-TREN)Na(dpa)] (**4**).

Atom	Chemical Shift (ppm)			
Assignment	dpa(H)	2	3	4
H1	8.16	7.92	7.99	7.92
H2	6.75	6.20	6.38	6.22
H3	7.53	7.14	7.30	7.15
H4	7.72	7.07	7.30	7.15
C1	148.3	149.1	148.8	149.0
C2	116.3	110.3	112.3	109.9
C3	137.7	136.5	136.9	136.3
C4	112.5	112.5	112.6	113.0
C5	155.8	167.2	163.2	167.0

	Chemical Shift (ppm)					
	2		3		4	
Signal	[(PMDETA)Na(dpa)] ₂ [(TMDAE)Na(dpa)] ₂		Va(dpa)]₂	[(TREN)Na(dpa)]		
	without	with	without	with	without	With
	⁺Bu₂Zn	^t Bu₂Zn	⁺Bu₂Zn	⁺Bu₂Zn	^t Bu₂Zn	^t Bu₂Zn
H1-dpa	8.12	8.04	8.04	7.99	8.18	8.18
H2-dpa	6.31	6.30	6.26	6.26	6.34	6.33
H3-dpa	7.27	7.11	7.18	7.08	7.30	7.16
H4-dpa	7.15	7.11	7.09	7.07	7.20	7.05
^t Bu₂Zn	-	1.58	-	1.53	-	1.66
donor ^a	2.24	2.03	2.16	2.06	1.91	1.76
$N(CH_2)$						
donor ^a	2.13	1.97	3.16	2.98	2.27	2.14
X(CH ₂) ^b						
donor ^a	2.11	1.92	2.01	1.92	0.78	0.58
NR_2^c						
donor ^a	1.99	1.86	-	-	-	-
N(CH ₃)						

Table S3 Comparison of ¹H NMR data (400.03 MHz, 300 K, C_6D_6 solvent) for sodium amides **2**, **3** and **4**, in absence and presence of ^tBu₂Zn.

^{*a*} For **2**, donor = PMDETA, for **3**, donor = TMDAE, for **4**, donor = H_6 -TREN ^{*b*} For **2** and **4**, X = N, for **3**, X = O ^{*c*} for **2** and **3**, R = (C H_3), for **4**, R = H.

Table S4 Comparison of ¹H NMR data (400.03 MHz, 300 K) for free TMEDA and TMEDA-coordinated zincate [{(TMEDA)Na(dpa)}₂Zn^tBu₂] (1).

			Chemical Shift (ppm)		
Entry	Compound	Solvent	CH ₂ -	CH₃-	
			TMEDA	TMEDA	
1	TMEDA	C_6D_6	2.35	2.12	
2	[{(TMEDA)Na(dpa)} ₂ Zn ^t Bu ₂] (1)	C_6D_6	1.69	1.74	
3	TMEDA	d ₈ -THF	2.30	2.15	
4	[{(TMEDA)Na(dpa)} ₂ Zn ^t Bu ₂] (1)	d_8 -THF	2.30	2.15	

solvent = d_8 THF

Figure S2 ¹H NMR Spectrum of [(PMDETA)Na(dpa)]₂ (2).

Figure S3 ¹³C NMR Spectrum of [(PMDETA)Na(dpa)]₂ (2).

Figure S4 DOSY NMR Spectrum of [(PMDETA)Na(dpa)]₂ (2) with ^tBu₂Zn.

Figure S6 ¹³C NMR Spectrum of [(TMDAE)Na(dpa)]₂ (3).

Figure S7 DOSY NMR Spectrum of [(TMDAE)Na(dpa)]₂ (3) with ^tBu₂Zn.

Figure S8 ¹H NMR Spectrum of [(H₆-TREN)Na(dpa)] (4).

Figure S9 ¹³C NMR Spectrum of [(H₆-TREN)Na(dpa)] (4).

Figure S10 DOSY NMR Spectrum of [(H₆-TREN)Na(dpa)] (4) with ^tBu₂Zn.

Figure S11 ¹H NMR Spectrum of [(TEMPO)Zn(^tBu)].

Figure S12 ¹³C NMR Spectrum of [(TEMPO)Zn(^tBu)].

Figure S13 Crude NMR Spectrum of 4-tert-butylbenzophenone and additional by-products.

Figure S14 Crude ¹H NMR Spectrum of TEMPO-^tBu from the worked-up reaction of [(PMDETA)Na(dpa)]₂, ^tBu₂Zn and TEMPO (comparison to literature values).¹ Assignments were verified by 2D COSY and HSQC experiments.

Figure S15 Crude ¹³C NMR Spectrum of TEMPO-^tBu from the worked-up reaction of [(PMDETA)Na(dpa)]₂, ^tBu₂Zn and TEMPO (comparison to literature values).¹ Assignments were verified by 2D COSY and HSQC experiments.

Figure S16 Reference ¹H NMR Spectrum of commercially available dpaH in C_6D_6 solvent.

Figure S17 Reference ¹H NMR Spectrum of commercially available dpaH in d₈-THF.

Figure S18 Reference ¹H NMR Spectrum of ${}^{t}Bu_{2}Zn$ in C₆D₆.

Figure S19 Reference ¹H NMR Spectrum of ${}^{t}Bu_{2}Zn$ in d₈-THF.

Figure S21 Reference ¹H NMR Spectrum of TMEDA in d₈-THF.

Figure S22 ¹H NMR Spectrum of [(PMDETA)Na(dpa)] in C₆D₆ solvent.

Figure S23 ¹H NMR Spectrum of [(PMDETA)Na(dpa)] with ^tBu₂Zn in a 2:1 ratio.

Figure S24 ¹H NMR Spectrum of [(TMDAE)Na(dpa)] in C₆D₆ solvent.

Figure S25 ¹H NMR Spectrum of [(TMDAE)Na(dpa)] with ^tBu₂Zn in a 2:1 ratio.

Figure S26 ¹H NMR Spectrum of [(H₆-TREN)Na(dpa)] in C₆D₆ solvent.

Figure S27 ¹H NMR Spectrum of [(H₆-TREN)Na(dpa)] with ^tBu₂Zn in a 2:1 ratio.

2.2 DOSY Analysis of 1, 2, 3 and 4

To glean further insight into the solution state structure, we analysed these reaction systems by diffusion ordered spectroscopy (DOSY) experiments.²⁻⁴ The Diffusion-Ordered Spectroscopy (DOSY) NMR experiments were performed on a Bruker AVANCE 400 NMR spectrometer operating at 400.13 MHz for proton resonance under TopSpin (version 2.0, Bruker Biospin, Karlsruhe) and equipped with a BBFO-z-atm probe with actively shielded z-gradient coil capable of delivering a maximum gradient strength of 54 G/cm. Diffusion ordered NMR data was acquired using the Bruker pulse program dstegp3s employing a double stimulated echo with three spoiling gradients. Sine-shaped gradient pulses were used with a duration of 3 ms together with a diffusion period of 100 ms. Gradient recovery delays of 200 µs followed the application of each gradient pulse. Data was accumulated by linearly varying the diffusion encoding gradients over a range from 2% to 95% of maximum for 64 gradient increment values. DOSY plot was generated by use of the DOSY processing module of TopSpin. Parameters were optimized empirically to find the best quality of data for presentation purposes.

A powerful and increasingly popular technique for the analysis of chemical mixtures,⁵⁻¹⁰ DOSY can shed light on the different species present in a multicomponent solution, which are separated according to their diffusion coefficients. DOSY analysis of sodium amides **2-4** in the presence of ^tBu₂Zn establishes that the resonances attributed to dpa and ^tBu₂Zn possess similar diffusion coefficients (Table S6). For example, the resonances attributed to dpa-H4 and ^tBu₂Zn within **4** possess reasonably similar diffusion coefficients of 5.632 x 10⁻¹⁰ m² s⁻¹ and 5.580 x 10⁻¹⁰ m² s⁻¹ respectively, which points towards the coordination of **4** to ^tBu₂Zn in C₆D₆ solution. However, it is of note that the diffusion coefficients of donor ligands PMDETA, TMDAE and H₆-TREN differ significantly to those of dpa and ^tBu₂Zn. To demonstrate, the resonances of **4** assigned to H₆-TREN have diffusion coefficients ranging from 7.759 to 7.910 x 10⁻¹⁰ m² s⁻¹. As *d*₈-THF solvent has proven capable of displacing the donor ligands of **2**, **3** and **4** in solution (refer to manuscript), it seems likely that this

S21

difference in diffusion coefficients could result from competitive equilibrium between donor ligand coordination and C_6D_6 coordination to Na. The capacity of benzene to act as a neutral π -donor towards sodium in the solid state has previously been observed through structural elucidation of the bimetallic complexes $[(C_6H_6)NaCr{O-Si(^tBu)_3}s_3]^{11}$ and $[(C_6H_6)NaAl(dpp-BIAN)Me_2]$ (where dpp-BIAN is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene).¹²

Table S5 Diffusion coefficients obtained from ¹H DOSY NMR experiment for[{(TMEDA)Na(dpa)}2^tBu2Zn], **1**.

Chemical Shift (ppm)	Peak Assignment	Diffusion Coefficient D (10 ⁻¹⁰) m ² s ⁻¹
8.06	H1-dpa	6.169
7.06	H3- and H4-dpa	6.197
6.27	H2-dpa	6.164
1.71	CH ₃ -TMEDA	6.988
1.64	CH ₂ -TMEDA	7.062
1.56	^t Bu	6.734

Table S6 Diffusion coefficients obtained from ¹H DOSY NMR experiments for sodium amides [(PMDETA)Na(dpa)]₂ (**2**), [(TMDAE)Na(dpa)]₂ (**3**) or [(H₆-TREN)Na(dpa)] (**4**) in combination with ^tBu₂Zn in C₆D₆ solution.

	2 :	and ^t Bu ₂ Zn	3 a	and ^t Bu ₂ Zn	4 ai	nd ^t Bu ₂ Zn
	δ	Diffusion	δ	Diffusion	δ	Diffusion
Signal	(ppm)	Coefficient	(ppm)	Coefficient	(ppm)	Coefficient
		(10 ⁻¹⁰) m ² s ⁻¹		(10 ⁻¹⁰) m ² s ⁻¹		(10 ⁻¹⁰) m ² s ⁻¹
dpa-H1	8.04	6.354	7.99	6.661	8.18	5.912
dpa-H2	6.30	6.097	6.26	6.655	6.34	5.766
dpa-H3	7.11	6.262	7.08	6.478	7.30	6.159
dpa-H4	7.11	6.262	7.07	6.478	7.20	5.632
⁺Bu₂Zn	1.58	6.856	1.53	7.152	-	5.580
donor ^a	2.03	7.681	2.06	7.779	1.91	7.759
$N(CH_2)$						
donor ^a	1.97	8.142	2.98	7.864	2.27	7.839
$X(CH_2)^b$						
donor ^a	1.92	7.821	1.92	8,135	0.78	7,910
	1.01		1.0 -	01200	0170	110 20
IN/12						
donor ^a	1.86	7.515	-	-	-	-
N(CH₃)						

^{*a*} For **2**, donor = PMDETA, for **3**; donor = TMDAE; for **4**, donor = H_6 -TREN ^{*b*} for **2** and **4**, X = N; for **3**, X = O ^{*c*} for **2** and **3**, R = (CH₃); for **4**, R = H.

3. Evaluating the Effect of Substituting ^tBu₂Zn by ^tBuLi as the *tert*-Butyl Source

The effect of substituting 'Bu₂Zn by 'BuLi as the *tert*-butyl source was also evaluated. It was found that substituting 'Bu₂Zn by 'BuLi as the *tert*-butyl ligand source in combination with [(PMDETA)Na(dpa)] shuts down any *para*-addition, with the yield falling from 48% to 0%. Moreover, no other *tert*-butylation products were observed. Only recovered benzophenone and the hydride addition product benzhydrol were obtained, with benzhydrol obtained in low but variable yields ranging from 16% to 32% (Scheme S1).¹³ A more ferocious reagent than 'Bu₂Zn, it seems plausible that the low yields obtained with 'BuLi are a result of side reactions occurring within this reaction system. Accordingly, the ¹H NMR spectrum of [(PMDETA)Na(dpa)] with 'BuLi was convoluted. Due to the low yields and the lack of *para*-addition observed within our system, this reaction was not studied further. These findings provide a marked contrast to the findings of Yamataka, which revealed that the reaction of 'BuLi with benzophenone in diethyl ether at 0 °C gave carbonyl-addition as the major product (65% yield), alongside a significant quantity of *para*-addition (28% yield).¹⁴

Scheme S1 Reaction of metalloligand **2** with ^tBuLi and benzophenone.

4. Neutral zinc complexes containing dpa ligands

As both a soluble and an insoluble product were obtained from the combination of [(TMEDA)Na(dpa)]₂ and R₂Zn, we decided to investigate the reaction chemistry of R₂Zn and dpa(H) in the absence of the sodium component. Combining R₂Zn with dpa(H) in a hexane/toluene solvent system at ambient temperature produced a pale yellow solution, from which a crop of colourless crystalline material (yield of 0.08 g, 10 % based on the dpa(H) stoichiometry, *i.e.*, with a maximum yield of 50 %) was deposited after 24 hours. The molecular structure of these crystals was determined through X-ray crystallography. The identity of the product was revealed to be homoleptic $[Zn(dpa)_2]$ (6), in conflict with the 1:1 stoichiometry of the starting materials. The reaction was successfully repeated on a rational scale, with an isolated crude product yield of 81 %. Unfortunately, the lack of solubility of **6** in C_6D_6 , d_8 -THF, d_5 -pyridine or d_6 -DMSO solvent prevented satisfactory NMR spectroscopic analysis, although resonances corresponding to unreacted dpa(H) were observed. NMR spectroscopic analysis of the filtrate revealed resonances attributed to dpa anions and R anions, although resonances attributed to more of 6 and to noncoordinated R₂Zn were absent. According to DFT calculations, the synthesis of 6 should be a stable product from the 1:2 combination of ^tBu₂Zn with dpa(H), however this product was not observed experimentally and only heteroleptic $[{(dpa)Zn(^{t}Bu)}_{2}]$ was produced. Although 6 is produced from the analogous reaction of R₂Zn with dpa(H), in a 1:2 stoichiometry, the solid product 6 is contaminated with a significant quantity of the parent amine, dpa(H). It therefore appears that neither the R₂Zn nor the ${}^{t}Bu_{2}Zn$ system is capable of generating clean, crystalline **6** in a decent yield.

Scheme S2 Synthesis of homoleptic zinc complex [Zn(dpa)₂] (6).

Turning to the molecular structure of 6, within it, Zn bonds to four pyridyl N centres in a distorted tetrahedral environment,¹⁵ where the two dpa anions adopt an antianti conformation (Figure S28). Occupation of the pyridyl pocket by a metal is a common bonding mode, especially for transition metal dipyridylamide complexes (Figure S29).¹⁶⁻¹⁹ Within 6 the four Zn-N bond lengths span a narrow range from 1.9681(17) Å (Zn1-N6) to 1.9851(16) Å (Zn1-N3). These Zn-N bond lengths are marginally shorter than those within the related [Zn{dpa(H)}]²⁺ cation of $[Zn{dpa(H)}_2][BF_4]_2$ [Zn-N bond lengths of 1.989(3) and 1.990(2) Å], reflecting the switch from anionic dpa to the parent amine, dpa(H).¹⁹ Within **6**, the chelating bond angles of N2-Zn1-N3 and N5-Zn1-N6 are 95.06(7) and 95.88(7)° respectively, similar to the equivalent N-Zn-N bond angle of 95.4(1)° within [Zn{dpa(H)}]²⁺. Examination of the key dipyridylamide bond lengths and angles within 6 suggests that there is a significant degree of resonance delocalisation. Indications of delocalisation include shorter C-N(amido) bonds (typical bond length 1.34 Å), longer C-N(pyridyl) bonds (typical value 1.38 Å) and a near zero dihedral angle between the two pyridyl ring planes.²⁰ Accordingly, the C-N(amido) bond lengths in **6** are short [C1-N1, 1.349(3) Å; C6-N1, 1.349(3) Å; C11-N4, 1.345(3) Å; C16-N4, 1.349(3) Å] and there is a concomitant lengthening of the C-N(pyridyl) bonds [C1-N2, 1.374(2) Å, C6-N3, 1.366(3) Å, C11-N5, 1.371(3) Å, C16-N6, 1.373(2) Å]. The near planarity of the two pyridyl ring planes provides further evidence for resonance delocalisation of the anionic charge (the dihedral angle is 1.702° between the C1…N2 and the C6…N3 ring planes, and is 3.327° between the C16…N6 and the C11…N5 ring planes). Similar to those in previously reported structures,²¹ there are two long C-N bonds, two shorter C-C bonds and two longer C-C bonds within each pyridyl ring, indicative of a N-C-C=C-C=C-N substitution pattern [bond lengths 1.374(2)/1.359(3), 1.428(3)/1.429(3), 1.361(3)/1.363(3), 1.405(3)/1.400(3), 1.366(3)/1.358(3), 1.363(3)/1.359(3)]. With a dihedral angle of 88.137°, the two dpa units are practically perpendicular to each other.

Figure S28 Molecular structure of 6 with thermal ellipsoids at 50% probability level and hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Zn1-N2, 1.9698(16); Zn1-N3, 1.9851(16); Zn1-N5, 1.9773(16); Zn1-N6, 1.9681(17); N1-C1, 1.349(3); N1-C6, 1.349(3); N2-C1, 1.374(2); N3-C6, 1.366(3); N4-C11, 1.345(3); N4-C16, 1.349(3); N5-C11, 1.371(3); N6-C16, 1.373(2); N2-C1, 1.374(2); C1-C2, 1.428(3); C2-C3, 1.361(3); C3-C4, 1.405(3); C4-C5, 1.366(3); N2-C5, 1.363(3); N3-C6, 1.359(3); C6-C7, 1.429(3); C7-C8, 1.363(3), C8-C9, 1.400(3); C9-C10, 1.358(3); N3-C10, 1.359(3); N2-Zn1-N3, 95.06(7); N2-Zn1-N5, 119.20(7); N2-Zn1-N6, 123.01(6); N3-Zn1-N5, 108.72(7); N3-Zn1-N6, 115.57(6); N5-Zn1-N6, 95.88(7); C1-N1-C6, 127.92(16); C11-N4-C16, 128.59(17), N1-C1-N2, 126.89(17); N1-C6-N3, 125.93(17); N4-C11-N5, 125.94(18); N4-C16-N6, 126.52(17).

Isostructural to **6**, the most relevant comparison is probably the neutral cobalt (II) complex $[Co(dpa)_2]$ (Figure S29), which was prepared through a salt metathesis reaction combining Lidpa with $CoCl_2$.¹⁶ However, possibly the most interesting comparison for **6** is provided by the substituted dpa, neutral zinc species $[Zn(dpa^*)_2]$ [where dpa* is 6,6'-di-*tert*-butyl(dpa)].²² Within this alkyl-substituted variant of **6**, both dpa* ligands adopt a *syn-anti* conformation and the pyridyl pocket is not occupied by Zn, contrasting with the *anti-anti* dpa conformation within **6**. This difference is clearly an artefact of the increased steric demands of the bulky *tert*-butyl substituents of dpa*. Looking at the molecular structure, the pyridine rings of $[Zn(dpa^*)_2]$ are not equivalent, however only one set of pyridyl NMR resonances is observed in C_6D_6 solution. This suggests that the pyridyl rings interconvert too rapidly to observe two distinct sets of resonances on the NMR timescale due to a low rotational barrier.

Figure S29 Graphical representation of transition metal neutral dipyridylamine and anionic dipyridylamide complexes.

DFT calculations were performed to probe the relative energies of the regioisomers of [Zn(dpa)₂] based upon different *anti-anti* (models $\mathbf{6}_{calc}$ -**A** and $\mathbf{6}_{calc}$ -**B**), *syn-syn*, (model $\mathbf{6}_{calc}$ -**C**) and *syn-anti* (models $\mathbf{6}_{calc}$ -**D** and $\mathbf{6}_{calc}$ -**E**) conformations of the dpa ligand (Figure S30), using the Gaussian computational package G03.²³ In this series of calculations the B3LYP^{24, 25} density functionals and the 6-311G(d,p)^{26, 27} basis set were used. These computations reinforced that model $\mathbf{6}_{calc}$ -**A**, having the experimentally observed structure, is the most thermodynamically favourable isomer. A comparison of the geometrical parameters calculated for model $\mathbf{6}_{calc}$ -**A** with those obtained experimentally through X-ray determination of the solid state structures show good agreement. The next energy minimum structure is that of $\mathbf{6}_{calc}$ -**D**, by +10.69 kcal mol⁻¹, which closely resembles the structure of crystalline [Zn(dpa*)₂]. With an *anti-anti* dpa conformation, $\mathbf{6}_{calc}$ -**B** is the most high energy structure (+53.53 kcal mol⁻¹) due to the low coordination of Zn (two-coordinate). The charge density distribution within $\mathbf{6}_{calc}$ -**A** reveals that the charge density couples into the formally neutral pyridyl rings, as the pyridyl N atoms (natural charge of -0.76) carry more negative charge than the bridging, amido N (natural charge of -0.63).

Figure S30 Relative energies of DFT-modelled compounds 6_{calc}-A-E.

5. DFT Calculations

DFT calculations were performed using the Gaussian computational package G03.²³ In this series of calculations the B3LYP^{24, 25} density functionals and the 6-311G(d,p)^{26, 27} basis set were used. After each geometry optimisation, a frequency analysis was performed and the energy values quoted include the zero point energy contribution.

5.1 [(PMDETA)Na(dpa)]₂, 2_{calc}

In view of the problems with the crystal structure of **2** we employed a DFT (density functional theory) study to model the molecular structure of **2**. The resultant optimised geometries were subjected to a frequency analysis, and the total energy computed by the DFT calculation was adjusted by inclusion of the zero-point energy contribution.

The xyz coordinates determined from the crystal structure of 2 were taken as the starting point for model 2_{calc} , with subsequent optimisation of the geometry. Significantly the key feature of experimental $\mathbf{2}$ is replicated in model $\mathbf{2}_{calc}$, as only two of the three PMDETA N atoms engage the Na atom. Within dimeric $\mathbf{2}_{calc}$, a C₂ axis of symmetry runs through N1 and N3. Thus each syn-syn dpa unit forms a symmetrical bridge between the two Na centres, although there are slight differences in their coordination towards Na. The first dpa unit displays similar (amido)N-Na and (pyridyl)N-Na bond lengths (Na1-N1, 2.541 Å and Na1-N2, 2.511 Å, respectively). In contrast, Na draws considerably closer to the terminal, (pyridyl)N arm (Na1-N4, 2.451 Å) of the second dpa fragment than it does to the (amido)N centre (Na1-N3, 2.704 Å). Inspection of the bond lengths of 2_{calc} reveals that resonance delocalisation of the anionic charge occurs within both dpa units. In comparison to bond length data from related neutral dpa(H) and anionic dpa complexes, the (amido)N-C bond lengths of 2_{calc} are short (N1-C1, 1.363 Å; N3-C6, 1.362 Å), whilst the (pyridyl)N-C bonds of 2_{calc} are elongated due to the loss of aromaticity (N2-C1, 1.364 Å; N4-C6, 1.365 Å).²⁷⁻³⁰ This contrasts with the bonding pattern observed within the neutral

dpa(H) cobalt species $[Co{dpa(H)}Cl_2]$, where the (amine)N-C bond lengths are long [1.373(4) and 1.382(4) Å] in comparison to the (pyridyl)N-C bonds [1.351(4) and 1.348(4) Å].¹⁶

Principal Bond Lengths (Å)

N1-Na1-N2	54.0
N3-Na1-N4	52.9
N5-Na1-N6	67.8
N1-Na1-N3	98.9
Na1-N1-Na1'	84.0
Na1-N3-Na1'	77.9

5.2 [(H₆-TREN)Na(dpa)], 4_{calc}

5.2.1 Total Energies (a.u.) and Relative Energies (kcal mol⁻¹)

Model 4 _{calc} -A	-1170.840325	0.00
Model 4 _{calc} -B	-1170.835238	+3.19
Model 4 _{calc} -C	-1170.825977	+9.00

syn-syn, **4_{calc}-A** relative energy: 0.00 kcal mol⁻¹

sy*n-anti,* **4_{calc}-B** relative energy: +3.19 kcal mol⁻¹

anti-anti, 4_{calc}-C
relative energy:
+9.00 kcal mol ⁻¹

5.2.2 4_{calc}-A (syn-syn)

Na1-N1

Na1...N2

Na1-N3

Na1-N6

Na1-N7

Na1-N4

Na1-N5

C5-N1-C6

(N4)H...N2

N2...N4

Principal Bond Lengths (Å)

2.388

3.720

2.539

2.526

2.510

2.516

2.756

126.2

2.068

3.071

N1-Na1-N3	55.1
N1-Na-N4	86.3
N1-Na-N5	138.8
N1-Na-N6	151.6
N1-Na-N7	91.9
N3-Na-N4	131.1
N3-Na-N5	159.2
N3-Na-N6	99.1
N3-Na-N7	99.5
N4-Na1-N5	69.7
N4-Na1-N6	107.2
N4-Na1-N7	111.8
N5-Na1-N6	69.5
N5-Na1-N7	68.4
N6-Na1-N7	105.3

5.2.3 4_{calc}-B (syn-anti)

Principal Bond Lengths (Å)

e

N1-C2	1.367	1.360
C2-N3	1.368	1.360
N3-C4	1.337	1.333
C4-C5	1.385	1.390
C5-C6	1.401	1.400
C6-C7	1.379	1.380
C7-C2	1.424	1.430
Na-N1	2.522	
Na-N3	2.397	
Na-N8	2.513	
Na-N9	2.508	
Na-N10	2.521	
Na-N11	2.664	

C2-N1-C2'	123.6
N1-Na-N3	55.5
N8-Na-N9	118.0
N8-Na-N10	101.3
N8-Na-N11	70.2
N9-Na-N10	126.3
N9-Na-N11	71.1
N10-Na-N11	71.4
C2'-N1-C2-C3	-159.1

5.2.4 4_{calc}-C (anti-anti)

Principal Bond Lengths (Å)

		(
N1-C2	1.350	1.334
C2-N3	1.366	1.377
N3-C4	1.342	1.340
C4-C5	1.383	1.385
C5-C6	1.405	1.411
C6-C7	1.374	1.372
C7-C2	1.430	1.440
Na-N3	2.378	2.498
Na-N8	2.573	
Na-N9	2.508	
Na-N10	2.564	
Na-N11	2.791	

		C7 N1 C7'
C2-N1-C2'	128.2	C6 C6'
N3-Na-N3'	76.9	
N8-Na-N9	100.8	
N8-Na-N10	100.2	C4'
N8-Na-N11	67.9	C4 N10
N9-Na-N10	119.5	
N9-Na-N11	68.6	
N10-Na-N11	68.4	No N11

5.3 [Zn(dpa)₂], 6_{calc}

5.3.1 Total Energies (a.u.) and Relative Energies (kcal mol⁻¹)

Model 6 _{calc} -A	-2879.626561	0.00
Model 6 _{calc} -B	-2879.541277	+53.53
Model 6 _{calc} -C	-2879.601186	+15.92
Model 6 _{calc} -D	-2879.609525	+10.69
Model 6 _{calc} -E	-2879.576896	+31.17

5.3.2 [Zn(dpa)₂], 6_{calc}-A

Principal Bond Lengths (Å) and Bond Angles (°)

Natural Charges and Bond Indices

N1	-0.63	N1-C2	1.32	C7 N1
C2	+0.42	C2-N3	1.22	C6
N3	-0.76	N3-C4	1.30	$C_2 \qquad C_2'$
C4	+0.08	C4-C5	1.53	
C5	-0.29	C5-C6	1.30	C4
C6	-0.16	C6-C7	1.57	· · · · · · · · · · · · · · · · · · ·
C7	-0.22	C7-C2	1.23	
Zn	+1.70	Zn-N3	0.15	T

-

5.3.3 [Zn(dpa)₂], 6_{calc}-B

Principal Bond Lengths (Å) and Bond Angles (°)

N1-C2	1.402
C2-N3	1.336
N3-C4	1.333
C4-C5	1.392
C5-C6	1.393
C6-C7	1.386
C7-C2	1.408
Zn-N	1.835
C2-N1-C2'	121.8
Zn-N1-C2	119.1
N1-Zn-N1	180.0
C2'-N1-C2-N3	32.7

5.3.4 [Zn(dpa)₂], 6_{calc}-C

Principal Bond Lengths (Å)

		ć
N1-C2	1.369	1.366
C2-N3	1.358	1.363
N3-C4	1.330	1.330
C4-C5	1.392	1.391
C5-C6	1.393	1.394
C6-C7	1.387	1.387
C7-C2	1.410	1.410
Zn-N1	1.900	
Zn-N3	2.736	2.494

		(
C2-N1-C2'	134.4	
Zn-N1-C2	116.6	109.0
N1-Zn-N1'	176.5	
N3-Zn-N3'	113.5	
N1-Zn-N3'	54.3	59.2
C2'-N1-C2-N3	-176.1	-175.9

5.3.5 [Zn(dpa)₂], 6_{calc}-D

Principal Bond Lengths (Å)

e

N1-C2	1.377	1.365
C2-N3	1.344	1.370
N3-C4	1.338	1.336
C4-C5	1.387	1.385
C5-C6	1.399	1.401
C6-C7	1.380	1.383
C7-C2	1.415	1.412
Zn-N1	1.975	
Zn-N3	2.122	

		(
C2-N1-C2'	127.8		
Zn-N1-C2	136.2	96.0	C6
N1-Zn-N1	143.2		C7 N3'
N3-Zn-N3	121.0		€7 🍑
N1-Zn-N3'	65.7		
C2'-N1-C2-N3	1.2	-179.9	
			<u>a</u>

5.3.6 [Zn(dpa)₂], 6_{calc}-E

		,	"	m
N1-C2	1.397	1.396	1.368	1.382
C2-N3	1.339	1.339	1.370	1.341
N3-C4	1.333	1.332	1.337	1.338
C4-C5	1.392	1.392	1.384	1.387
C5-C6	1.394	1.394	1.401	1.398
C6-C7	1.386	1.386	1.384	1.381
C7-C2	1.410	1.411	1.410	1.414
Zn-N1	1.862		1.950	
Zn-N3			2.102	

Principal Bond Lengths (Å)

		,	"	,,,,
C2-N1-C2'	121.4		127.8	
Zn-N1-C2	119.7	118. 7	95.9	136.3
N1-Zn-N1	157.6			
N1-Zn-N3	66.4			
C2'-N1-C2-N3	33.6	32.5	2.7	-177.2

5.4 [(TMEDA)Na(dpa)]₂, 8_{calc}

Principal Bond Lengths (Å)

N1-C5	1.363
C5-N2	1.363
N2-C1	1.335
C1-C2	1.389
C2-C3	1.400
C3-C4	1.381
C4-C5	1.424
N3-C10	1.361
N3-C10 C10-N4	1.361 1.365
N3-C10 C10-N4 N4-C6	1.361 1.365 1.336
N3-C10 C10-N4 N4-C6 C6-C7	1.361 1.365 1.336 1.387
N3-C10 C10-N4 N4-C6 C6-C7 C7-C8	1.361 1.365 1.336 1.387 1.400
N3-C10 C10-N4 N4-C6 C6-C7 C7-C8 C8-C9	1.361 1.365 1.336 1.387 1.400 1.380
N3-C10 C10-N4 N4-C6 C6-C7 C7-C8 C8-C9 C9-C10	1.361 1.365 1.336 1.387 1.400 1.380 1.426

C5-N1-C5'	123.7
C10-N3-C10'	122.6
N1-Na1-N2	53.7
N5-Na1-N6	70.4
N3-Na1-N4	53.1
N1-Na1-N3	100.1
Na1-N1-Na1'	83.3
Na1-N1-Na1'	76.6

6. Discussion of Dpa Bond Lengths and Bond Angles

Table S7 Key bond lengths for a range of neutral and anionic dpa complexes.

	Compound			Bond Length (Å)			
		а	b	С	D		
dpa(H)		1.343(2)	1.388(2)	1.391(2)	1.335(2)		
monoclinic ²⁸							
dpa(H)		1.332(4)	1.379(4)	1.380(4)	1.338(4)		
orthorhombic ²⁹							
dpa(H)		1.337(2)	1.380(3)	1.376(3)	1.334(3)		
triclinic ³⁰							
$[Co{dpa(H)}Cl_2]^{16}$	\land	1.351(4)	1.373(4)	1.382(4)	1.348(4)		
[Co(dpa) ₂] ¹⁶		1.367(4)	1.346(4)	1.344(4)	1.371(4)		

7. Tables of Results

7.1 Donor Ligand Variation

Variation of donor ligands: stoichiometric conditions

ⁿBuNa (0.16 g, 2 mmol) was suspended in hexane (6 mL) and dpa(H) (0.34g, 2 mmol) was added. The resultant beige suspension was allowed to stir for 45 minutes at ambient temperature. To this, the donor ligand was injected [DMAP (0.24 g, 2 mmol); TEMPO (0.31 g 2 mmol); TMEDA (0.30 mL, 2 mmol); PMDETA (0.42 mL, 2 mmol); TMDAE (0.38 mL, 2 mmol); H₆-TREN (0.30 mL, 2 mmol); Me₆-TREN (0.42 mL, 2 mmol)]. A hexane solution of ^tBu₂Zn (2 mL of a 0.5 M solution, 1 mmol) was subsequently added, followed by benzophenone (0.18 g, 1 mmol) and the reaction was stirred for 18 h, either at ambient temperature or at 75°C prior to work-up.

Scheme S3 General reaction scheme for the metalloligand assisted *tert*-butylation of benzophenone with variation of the Lewis donor.

Variation of donor ligands: catalytic conditions

ⁿBuNa (0.08 g, 1 mmol) was suspended in hexane (30 mL) and dpa(H) (0.17 mL, 1 mmol) was added. The reaction mixture was allowed to stir for 45 minutes. Subsequently, the donor ligand was added [DMAP (0.12 g, 1 mmol); TMEDA (0.15 mL, 1 mmol); PMDETA (0.21 mL, 1 mmol); TMDAE (0.14 mL, 1 mmol)]. Following this, ^tBu₂Zn (10 mL of a 0.5 M solution of ^tBu₂Zn in hexane, 5 mmol), and benzophenone (0.90 g, 5 mmol) were added. The reaction mixture was stirred under reflux conditions for 18 h, prior to work-up.

7.1.1 Reactions with [(DMAP)Na(dpa)]

Stoichiometric reaction conditions, ambient temperature, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
DMAP	Hexane	8	0	21	7	36
DMAP	Hexane	3	0	27	2	32

Stoichiometric reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
DMAP	Hexane	13	0	26	6	45
DMAP	Hexane	15	0	24	9	48

Catalytic reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
DMAP	Hexane	9	0	30	6	45
DMAP	Hexane	7	0	21	7	35

7.1.2 Reactions with [(TMEDA)Na(dpa)]₂²⁰

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TMEDA	Hexane	9	2	43	13	67
TMEDA	Hexane	8	2	36	25	71
TMEDA	Hexane	12	1	43	14	69
TMEDA	Hexane	16	3	54	5	78

Stoichiometric reaction conditions, 75°C, 18 hours:

7.1.3 Reactions with [(TMDAE)Na(dpa)]₂

Stoichiometric reaction conditions, ambient temperature, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TMDAE	Hexane	1	0	2	0	3
TMDAE	Hexane	1	0	3	0	4
TMDAE	Hexane	1	0	2	0	3

Stoichiometric reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TMDAE	Hexane	9	2	46	3	60
TMDAE	Hexane	9	0	43	3	55

Catalytic reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TMDAE	Hexane	6	0	24	3	33
TMDAE	Hexane	7	0	26	3	36

7.1.4 Reactions with [(PMDETA)Na(dpa)]₂

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
PMDETA	Hexane	2	1	41	16	60
PMDETA	Hexane	3	0	46	7	56
PMDETA	Hexane	2	1	43	10	56

Stoichiometric reaction conditions, ambient temperature, 18 hours:

Stoichiometric reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
PMDETA	Hexane	3	1	44	20	68
PMDETA	Hexane	2	1	51	1	55
PMDETA	Hexane	5	0	44	8	57

Catalytic reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
PMDETA	Hexane	5	0	54	7	66
PMDETA	Hexane	6	0	58	6	70
PMDETA	Hexane	5	0	53	4	62
PMDETA	Hexane	9	0	47	7	63

7.1.5 Reactions with [(H₆-TREN)Na(dpa)]

Stoichiometric reaction conditions, ambient temperature, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
H ₆ TREN	Hexane	1	0	1	1	3
H ₆ TREN	Hexane	2	0	1	6	9

Stoichiometric reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
H ₆ TREN	Hexane	5	0	6	7	18
H ₆ TREN	Hexane	3	0	4	6	13

7.1.6 Reactions with [(Me₆-TREN)Na(dpa)]

Stoichiometric reaction conditions, ambient temperature, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
Me ₆ TREN	Hexane	1	0	1	1	3
Me ₆ TREN	Hexane	0	0	0	0	0

Stoichiometric reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
Me ₆ TREN	Hexane	12	0	26	9	45
Me ₆ TREN	Hexane	13	0	32	15	60
Me ₆ TREN	Hexane	13	0	37	6	56
Me ₆ TREN	Hexane	15	0	41	15	71

7.1.7 Reaction with [(TEMPO)Na(dpa)]

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TEMPO	Hexane	0	0	0	0	0
TEMPO	Hexane	0	0	0	2	2

Stoichiometric reaction conditions, ambient temperature, 18 hours:

7.1.8 Reaction with [(PMDETA)Na(dpa)]₂ and TEMPO

Dpa(H) (0.34 g, 2 mmol) was added to a freshly prepared suspension of BuNa (0.16 g, 2 mmol) in hexane (8 mL) and the reaction mixture was stirred for 45 minutes at ambient temperature. Subsequently, PMDETA (0.42 mL, 2 mmol), TEMPO (0.31 g, 2 mmol), ^tBu₂Zn (2 mL of a 0.5 M solution in hexane, 1 mmol) and benzophenone (0.18 g, 1 mmol) were added and the reaction mixture was stirred at ambient temperature for 18 hours prior to work-up.

Stoichiometric reaction conditions, ambient temperature, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
PMDETA/TEMPO	Hexane	0	0	0	0	0
PMDETA/TEMPO	Hexane	0	0	1	1	0
PMDETA/TEMPO	Hexane	0	0	3	2	5

7.2 Variation of the Alkali Metal

Variation of alkali metal: reaction with Lidpa, Nadpa or Kdpa

Scheme S4 General reaction scheme for the metalloligand assisted *tert*-butylation of benzophenone with variation of the alkali metal, M = Li, Na, K.

Following the introduction of an organometallic reagent R'M [R'M = BuLi (1.25 mL, 1.6 M in hexanes solution, 2 mmol); ⁿBuNa (0.16 g, 2 mmol); or KR (0.25 g, 2 mmol) (where R is CH_2SiMe_3)] to hexanes solvent (6 mL), dpa(H) (0.34 g, 2 mmol) was added *via* a solid addition tube. The resultant beige suspension was then stirred for 45 minutes at ambient temperature. To this, PMDETA was injected (0.42 mL, 2 mmol), followed by a hexane solution of ^tBu₂Zn (2 mL of a 0.5 M solution, 1 mmol). Benzophenone (0.18 g, 1 mmol) was subsequently added and the reaction was stirred for 18 hours at ambient temperature prior to work-up.

Lidpa, stoichiometric conditions, room temperature, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
PMDETA	Hexane	20	0	23	19	62
PMDETA	Hexane	17	0	19	16	52

	Kdpa,	stoichiometric	conditions,	room te	emperature,	18 hours:
--	-------	----------------	-------------	---------	-------------	-----------

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
PMDETA	Hexane	2	0	2	0	4
PMDETA	Hexane	1	0	2	0	3

7.3 Variation of the R Group: Reaction with Zn(CH₂)Si(CH₃)₃

Scheme S5 General reaction scheme for the metalloligand assisted alkylation of benzophenone with ZnR₂ [R is (CH₂)SiMe₃].

ⁿBuNa (0.16 g, 2 mmol) was suspended in hexane (6 mL) and dpa(H) (0.34g, 2 mmol) was added. After the reaction mixture was stirred for 1 h, TMEDA (0.30 mL, 2 mmol) was added, followed by R_2Zn (2 mL of a 0.5 M solution in hexane, 1 mmol). Following the addition of benzophenone (0.18 g, 1 mmol), the reaction was allowed to stir for 18 h, either at ambient temperature or under reflux conditions prior to work-up.

Stoichiometric reaction conditions, ambient temperature, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TMEDA	Hexane	0	0	0	0	0
TMEDA	Hexane	0	0	0	0	0

Stoichiometric reaction conditions, 75°C, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TMEDA	Hexane	0	0	0	7	7
TMEDA	Hexane	0	0	0	8	8

7.4 Variation of the Solvent System

Scheme S6 General reaction scheme for the metalloligand assisted *tert*-butylation of benzophenone with variation of the bulk solvent.

ⁿBuNa (0.16 g, 2 mmol) was suspended in hexane (6 mL) and dpa(H) (0.34 g, 2 mmol) was added. The resultant beige suspension was allowed to stir for 45 minutes at ambient temperature, following which, all solvent was removed *in vacuo*. THF (6 mL), TMEDA (0.30 mL, 2 mmol), and ^tBu₂Zn (2 mL of a 0.5 M solution in THF, 1 mmol) were then added.^[a] Following the addition of benzophenone (0.18 g, 1 mmol), the reaction was allowed to stir at ambient temperature for 18 h, over which time a colour change from orange to green was observed. The reaction was worked up as per Method A.

[a] When the reaction was performed in a mixed THF/hexane solvent system, hexane (4 mL), TMEDA (0.30 mL, 2 mmol), THF (2 mL) and ${}^{t}Bu_{2}Zn$ (2 mL of a 0.5 M solution in THF, 1 mmol) were injected.

Stoichiometric reaction conditions, ambient temperature, hexane solvent, 18 hours: see Section 7.1.2.

Stoichiometric reaction conditions, ambient temperature, hexane/THF solvent system, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TMEDA	Hexane/THF	4	0	11	2	17
TMEDA	Hexane/THF	3	0	5	1	9
TMEDA	Hexane/THF	2	0	6	1	9

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
TMEDA	THF	2	0	9	1	12
TMEDA	THF	3	0	10	2	15
TMEDA	THF	3	0	13	1	17

Stoichiometric reaction conditions, ambient temperature, THF solvent, 18 hours:

7.5 Variation of the tert-butyl ligand source

Dpa(H) (0.34 g, 2 mmol) was added to a freshly prepared suspension of "BuNa (0.16 g, 2 mmol) in hexane (6 mL). PMDETA (0.42 mL, 2 mmol) was subsequently introduced, followed by either ${}^{t}Bu_{2}Zn$ (2 mL of a 0.5 M solution in hexane, 1 mmol), or ${}^{t}BuLi$ (1.18 mL of a 1.7 M solution in pentane, 2 mmol). Following the addition of benzophenone (0.18 g, 1 mmol), the reaction was stirred at ambient temperature for 18 hours prior to work up according to Method A.

Stoichiometric reaction conditions, ambient temperature, hexane solvent, 18 hours:

Ligand	Solvent	1,2	1,4	1,6	Benzhydrol	Total
		Addition	Addition	Addition	(%)	Yield
		(%)	(%)	(%)		(%)
Dimer + 2 ^t BuLi	Hexane	0	0	0	16	16
Dimer + 2 ^t BuLi	Hexane	0	0	0	24	24
Dimer + 2 ^t BuLi	Hexane	0	0	1	26	27
Dimer + 2 ^t BuLi	Hexane	2	0	5	32	39

References

- 1. G. Sorin, R. M. Mallorquin, Y. Contie, A. Baralle, M. Malacria, J. P. Goddard and L. Fensterbank, *Angew. Chem. Int. Ed.*, 2010, **49**, 8721-8723.
- 2. M. Valentini, P. S. Pregosin and H. Ruegger, *Organometallics*, 2000, **19**, 2551-2555.
- 3. A. Macchioni, G. Ciancaleoni, C. Zuccaccia and D. Zuccaccia, *Chem. Soc. Rev.*, 2008, **37**, 479-489.
- 4. D. Li, I. Keresztes, R. Hopson and P. G. Williard, *Acc. Chem. Res.*, 2009, **42**, 270-280.
- 5. S. Trefi, C. Routaboul, S. Hamieh, V. Gilard, M. Malet-Martino and R. Martino, *J. Pharmaceut. Biomed.*, 2008, **47**, 103-113.
- 6. D. R. Armstrong, P. García-Álvarez, A. R. Kennedy, R. E. Mulvey and J. A. Parkinson, *Angew. Chem. Int. Ed.*, 2010, **49**, 3185-3188.
- 7. D. R. Armstrong, W. Clegg, P. García-Álvarez, M. D. McCall, L. Nuttall, A. R. Kennedy, L. Russo and E. Hevia, *Chem. Eur. J.*, 2011, **17**, 4470-4479.
- 8. D. R. Armstrong, A. R. Kennedy, R. E. Mulvey, J. A. Parkinson and S. D. Robertson, *Chem. Sci.*, 2012, **3**, 2700-2707.
- 9. C. Su, R. Hopson and P. G. Williard, *Eur. J. Inorg. Chem.*, 2013, **2013**, 4136-4141.
- 10. C. C. Su, R. Hopson and P. G. Williard, J. Am. Chem. Soc., 2013, 135, 12400-12406.
- 11. O. L. Sydora, P. T. Wolczanski, E. B. Lobkovsky, C. Buda and T. R. Cundari, *Inorg. Chem.*, 2005, 44, 2606-2618.
- 12. H. Schumann, M. Hummert, A. N. Lukoyanov and I. L. Fedushkin, *Chem. Eur. J.*, 2007, **13**, 4216-4222.
- 13. The reaction was performed four times. Refer to ESI for further detail.
- 14. H. Yamataka, Y. Kawafuji, K. Nagareda, N. Miyano and T. Hanafusa, *J. Org. Chem.*, 1989, **54**, 4706-4708.
- 15. Zn1 possesses a τ4 value of 0.84, according to the method proposed by Houser. The value of τ4 represents a scale where 0.00 refers to an ideal square planar geometry, and 1.00 indicates an ideal tetrahedral geometry., L. Yang, D. R. Powell and R. P. Houser, *Dalton Trans.*, 2007, **36**, 955-964.
- 16. F. A. Cotton, L. M. Daniels, G. T. Jordan IV and C. A. Murillo, *Polyhedron*, 1998, **17**, 589-597.
- 17. Y. Gultneh, A. R. Khan, D. Blaise, S. Chaudhry, B. Ahvazi, B. B. Marvey and R. J. Butcher, *J. Inorg. Biochem.*, 1999, **75**, 7-18.
- 18. K.-Y. Ho, W.-Y. Yu, K.-K. Cheung and C.-M. Che, *Dalton Trans.*, 1999, 1581-1586.
- 19. S. H. Rahaman, D. Bose, H. Chowdhury, G. Mostafa, H.-K. Fun and B. K. Ghosh, *Polyhedron*, 2005, **24**, 1837-1844.
- 20. D. R. Armstrong, J. A. Garden, A. R. Kennedy, R. E. Mulvey and S. D. Robertson, *Angew. Chem. Int. Ed.*, 2013, **52**, 7190-7193.
- 21. H. Gornitzka and D. Stalke, Eur. J. Inorg. Chem., 1998, 311-317.
- 22. Z. Zheng, M. K. Elmkaddem, C. Fischmeister, T. Roisnel, C. M. Thomas, J.-F. Carpentier and J.-L. Renaud, *New J. Chem.*, 2008, **32**, 2150-2158.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.

Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. B. Cui, A.G., S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *GAUSSIAN03 (Revision C.02)*, Gaussian, Inc.: Wallingford, CT, 2004.

- 24. W. Kohn, A. D. Becke and R. G. Parr, J. Phys. Chem., 1996, 100, 12974-12980.
- 25. A. D. Becke, *Phys Rev A*, 1988, **38**, 3098-3100.
- 26. A. D. Mclean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639-5648.
- 27. R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.*, 1980, **72**, 650-654.
- H. Schödel, C. Näther, H. Bock and F. Butenschön, *Acta Crystallogr.*, 1996, B52, 842-853.
- 29. J. E. Johnson and R. A. Jacobsen, Acta Crystallogr., 1973, B29, 1669-1674.
- 30. G. J. Pyrka and A. A. Pinkerton, Acta Crystallogr., 1992, C48, 91-94.