Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

In-situ spectroscopic study of the local structure of oxyfluoride melts: I. A NMR insight into the speciation LiF-LaF₃ containing oxides Supplementary Information

Anne-Laure Rollet,*^a Haruaki Matsuura^{a,b} and Catherine Bessada^b 5

10 1. X-Ray diffraction and MAS NMR characterization of the samples after HT NMR experiments

To identify the phases coexisting in the sample after NMR measurement, X-ray diffraction analysis on some samples have

15 been also performed. The fig. S1 presents the X-Ray diffractograms of LiF-LaF₃ ($x_{LaF3} = 0.20$) + Li₂O ($x_{Li2O} = 0.20$) and of LiF-LaF₃ ($x_{LaF3} = 0.20$) + Li₂O ($x_{Li2O} = 0.50$) after High Temperature NMR experiments.

No Li_2O is observed in the diffractograms whatever its concentration. It has completely reacted with LaF_3 to form LaOF.

- 25 No La₂O₃ is either observed. However in the case of $x_{Li2O} = 0.50$, the sample was heated for approximately 40 minutes at temperature up to 1400K and small amount of LaOF has reacted with the boron nitride (coming from the crucible) to form LaBO₃. The ¹⁹F MAS NMR spectra are displayed in figure S2. At
- $30 x_{Li20} = 0$, the peak of LiF at -201ppm and the three peaks of LaF₃ can be observed. At $x_{Li20} = 1$, the peak of LaOF at -35ppm is

clearly visible along the one of LiF. This value is close to the value of rhombohedral-LaOF at room temperature obtained by Woo et al. by thermal decomposition of $LaFCO_3$.¹

2. Behaviour during heating

40 In the following figures are presented the NMR spectra of ¹⁹F and ¹³⁹La from 790K to 1393 K in the mixture of LiF-LaF₃ ($x_{LaF3} = 0.2, x_{LiF} = 0.8$) + Li₂O:

• $x_{\text{Li2O}} = 0$ figure S3

• $x_{\text{Li2O}} = 0.1$ figure S4 and S5

• $x_{\text{Li2O}} = 0.3$ figure S6 and S7

• $x_{\text{Li2O}} = 0.5$ figure S8 and S9

Fig. S4. ¹⁹F NMR spectra of LaLi₄ F_7 + Li₂O ($x_{Li2O} = 0.10$) for increasing temperature. The liquid peak is not fully represented to allow us to see the LaOF, LaF₃ and LiF solid peaks. In the encart is shown the full spectra.

10 Fig. S5. ¹³⁹La NMR spectra of LaLi₄F₇+ Li₂O ($x_{Li2O} = 0.10$) for increasing temperature.

Fig. S6. ¹⁹F NMR spectra of LaLi₄ F_7 + Li₂O ($x_{Li2O} = 0.30$) for increasing temperature.

Fig. S7. ¹³⁹La NMR spectra of LaLi₄ F_7 + Li₂O ($x_{Li2O} = 0.30$) for increasing temperature.

Fig. S8. ¹⁹F NMR spectra of LaLi₄ F_7 + Li₂O ($x_{Li2O} = 0.50$) for increasing temperature.

20

Fig. S9. ¹³⁹La NMR spectra of LaLi₄ F_7 + Li₂O ($x_{Li2O} = 0.50$) for increasing temperature.

3. HT NMR experiments on the LaF₃-LiF phase 5 diagram

Fig. S10. LiF-LaF₃ phase diagram from Fedorov² (blue line), Beilmann et al.³ (dashed dark green line), F. Abdoun et al. (pink line)⁴, Van der Meer et al.⁵ (dashed light green line), A. I. Agulyanskii and V. A. Bessonova⁶
10 (purple line). The red points indicate the position of the experiments made in this paper.

If LaOF precipitation occurs when Li₂O is added to the system, it induces a shift in the phase diagram toward poorer composition in LaF₃ as shown in figure S11. For LaF₃-LiF 30-70mol%, the 15 experimental temperature then becomes much higher than the liquidus temperature. The consequence in our experiments is a vaporization of LiF, we have therefore kept the experiment duration short and we haven't investigated the effect of temperature on this system. For LaF₃-LiF 10-90mol%, we had to

20 increase the temperature to reach the liquidus.

Notes and references

- 1 D. C. Woo, M.-H. Lee, W.-S. Jung, Ceram. Int., 2013, 39, 1533.
- 2 P. P. Fedorov, Russ. J. Inorg. Chem, 1999, 44(11), 1703.
- 3 M. Beilmann, O. Beneš, R. J. M. Konings, T. Fanghänel, J. Chem. Thermodyn., 2011, 43, 1515.3
- 4 F. Abdoun, M. Gaune-Escard, G. Hatem, J. Phase Equilib., 1997, 18, 6.
- 5 J. P. M. van der Meer, R. J. M. Konings, K. Hack, H. A. J. Oonk,

Chem. Mater., 2006, 18, 510.

A. I. Agulyanskii and V. A. Bessonova, *Zh. Neorg. Khim.*, 1982, 27
 [4], 1029-1032; *Russ. J. Inorg. Chem.* (Engl. Transl.), 1982, 27
 [4] 579-581.