SUPPORTING INFORMATION of SYNTHESES and STRUCTURES

Synthesis and Molecular Structure of an Abnormal Carbene-Gallium Chloride Complex

Mingwei Chen, Yuzhong Wang, Robert J. Gilliard, Pingrong Wei, Nichole A. Schwartz and Gregory H. Robinson*

Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States

To whom correspondence should be addressed. Email: robinson@uga.edu

All reactions were performed under purified argon using Schlenk techniques and an inert atmosphere drybox (M-Braun LabMaster 130). Chemicals were purchased from commercial sources and used as received. Solvents were dried and distilled under argon from Na/benzophenone prior to use. N-heterocyclic carbene NHC (NHC = :C{N(2,6-Pri₂C₆H₃)CH}₂) and compound **2** was prepared according to the literature method.^{1,2} ¹H and ¹³C NMR spectra were recorded on a Varian Mercury Plus 400 MHz spectrometer. ¹¹B NMR spectra were recorded on a Varian Unity Inova 500 MHz spectrometer. X-ray intensity data for compound **4**, **5** · **THF** and **6** · (**toluene**)_{0.5} were collected on a Bruker SMART APEX II X-ray diffractometer system with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å), using the ω -scan technique.

Compound 4: NHC:BEt₃ (NHC = :C{N(2,6-Pri₂C₆H₃)CH}₂) was prepared similarly according to the literature method reported for the synthesis of NHC:BH $_3^3$: to a slurry of NHC carbene (10.0g, 25.732 mmol) in hexane (120 mL) was added BEt₃ (2.6g, 26.532 mmol) at ambient temperature. The mixture was stirred over one day and then the solution was filtered. The residue of NHC:BEt₃ was obtained after the volatiles were removed in vacuo. To a solution of L:BEt₃ (5.0g, 10.275 mmol) in THF (50 mL) was added 6.5 mL of nBuLi solution (1.6M, 10.4 mmol) at -78 °C. The mixture was allowed to warm to room temperature over night and the solvent was then removed in vacuo. The residue was recrystallized in THF giving X-ray quality colorless crystals of 4 (7.1g, 98% yield) at ambient temperature. Mp: gradually decomposed at 303 °C and melt at 311 °C. ¹H NMR (THF-d₈): $\delta = 0.16$ [q, 6H, B(CH₂CH₃)₃], 0.46 [t, 9H, B(CH₂CH₃)₃], 1.08 [d, 6H, CH(CH₃)₂], 1.13 [d, 6H, CH(CH₃)₂], 1.30 [d, 12H, CH(CH₃)₂], 2.97 [m, 4H, CH(CH₃)₂], 6.08 (s, 1H, CH), 7.09-7.28 (m, 6H, Ar-H).¹³C NMR (C₆D₆): $\delta = 13.4$ [BCH₂CH₃], 23.5 [BCH₂CH₃], 23.8 [CH(CH₃)₂], 24.1 [CH(CH₃)₂], 26.5 [CH(CH₃)₂], 27.2 [CH(CH₃)₂], 27.4 [CH(CH₃)₂], 28.1 [CH(CH₃)₂], 29.9 [CH(CH₃)₂], 30.0 [CH(CH₃)₂], 132.4 (LiCCN), 141.1 (NCCH), 123.7, 124.0, 128.0, 129.3, 146.7, 147.0, 147.9 (Ar-C), 207.2 (NCHN). ¹¹B NMR (THF-d₈, 160.35 MHz): δ = -13.85. Anal. Calc. for 4 (C₄₅H₇₄N₂O₃BLi): C, 76.25; H, 10.52; N, 3.95; Found: C, 76.19; H, 10.38; N, 4.06. Crystal data for 4: C₄₅H₇₄N₂O₃BLi, fw = 708.81, orthorhombic, *Pca21* (No. 29), a = 23.735(2) Å, b = 10.4695(10) Å, c = 1018.5654(17) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 4613.4(7) Å³, Z = 4, R1 = 0.0584 for 8405 data $(I > 2\sigma(I))$, wR₂ = 0.1268 (all data).

Compound **5**: To a solution of GaCl₃ (0.3g, 1.704mmol) in THF (20 mL) was slowly added a solution of compound **4** (1.2g, 1.693mmol) in THF (20 mL) at -78 °C. The mixture was allowed to warm to room temperature over night and then the solvent was removed in vacuo. The residue was recrystallized in mixture of THF/hexane giving X-ray quality colorless crystals of **5** (0.72g, 67% yield). Mp: gradually decomposed and melt at 140 °C. ¹H NMR (THF-d₈): $\delta = 1.11$ [d, 6H, CH(CH₃)₂], 1.21 [d, 6H, CH(CH₃)₂], 1.29

[d, 6H, CH(CH₃)₂], 2.50 (m, 2H, CH(CH₃)₂), 2.62 [m, 2H, CH(CH₃)₂], 7.34 (d, 2H, Ar-*H*), 7.42 (d, 2H, Ar-*H*), 7.50 (t, 1H, Ar-*H*), 7.57 (t, 1H, Ar-*H*), 7.91 (s, 1H, C=C*H*), 9.51 (s, 1H, NC*H*N). ¹³C NMR (THF-d₈): $\delta = 23.5$ [CH(CH₃)₂], 24.9 [CH(CH₃)₂], 25.7 [CH(CH₃)₂], 26.5 [CH(CH₃)₂], 27.2 [CH(CH₃)₂], 27.4 [CH(CH₃)₂], 30.5 [CH(CH₃)₂], 30.6 [CH(CH₃)₂], 134.1 (GaCCN), 142.3 (NCCH), 125.6, 126.2, 132.4, 132.9, 133.2, 134.0, 147.2, 147.4 (Ar), 207.2 (NCHN). Anal. Calc. for **5** · **THF** (C₃₁H₄₄N₂OGaCl₃): C, 58.47; H, 6.97; N, 4.40; Found: C, 58.39; H, 7.06; N, 4.36. Crystal data for **5** · **THF**: C₃₁H₄₄N₂OGaCl₃, fw = 636.75, Orthorhombic, *P*bca (No. 61), *a* = 11.4236(6) Å, *b* = 20.7234(11) Å, *c* = 29.0681(16) Å, *V* = 6881.5(6) Å³, *Z* = 8, R1 = 0.0470 for 7085 data (*I* > 2*σ*(*I*)), wR₂ = 0.1181 (all data).

Compound 6: To a solution of GaCl₃ (0.323g, 1.835mmol) in THF (10 mL) was slowly added a solution of compound 2 (0.9g, 1.829mmol) in THF (30 mL) at -78 °C. The mixture was allowed to warm to room temperature over night and then the solvent was removed in vacuo. The residue was extracted using 30 mL of toluene. The filtrate was concentrated to ca. 5 mL in vacuo, to which 5 mL of hexane was then added. X-ray quality colorless crystals of 6 were observed over 5 days (0.78g, 76% yield). Mp: gradually decomposed and melt at 224 °C. ¹H NMR (C_6D_6): $\delta = 0.73$ [t, 6H, B(CH₂CH₃)₂], 0.86 [q, 4H, B(CH₂CH₃)₂], 0.93 [t, 12H, CH(CH₃)₂], 1.47 [t, 12H, CH(CH₃)₂], 2.66 [m, 2H, CH(CH₃)₂], 2.82 [m, 2H, CH(CH₃)₂], 7.08-7.29 (m, 6H, Ar-H), 7.45 (s, 1H, CH).¹³C NMR $(C_6D_6): \delta = 8.2 [BCH_2CH_3], 22.1 [BCH_2CH_3], 23.9 [CH(CH_3)_2], 24.2 [CH(CH_3)_2], 25.3$ [CH(CH₃)₂], 25.8 [CH(CH₃)₂], 28.8 [CH(CH₃)₂], 29.1 [CH(CH₃)₂], 67.5 (BCCN), 137.9 (NCCH), 124.2, 124.5, 131.3, 131.4, 144.9, 145.4 (Ar-C). ¹¹B NMR (C₆D₆, 160.35 MHz): $\delta = -14.75$. Crystal data for **6** · (toluene)_{0.5}: C₆₉H₉₈N₄B₂Ga₂Cl₆, fw = 1357.27, Monoclinic, P2(1)/c (No. 14), a = 9.4189(15)Å, b = 20.580(3)Å, c = 19.841(3)Å, α = 90°, β = $102.730(3)^{\circ}$, $\gamma = 90^{\circ}$, $V = 3751.4(10)^{\circ}$ Å³, Z = 2, R1 = 0.0602 for 7389 data $(I > 2\sigma(I))$, $wR_2 = 0.1940$ (all data).

Reference:

1. Arduengo, A. J., III; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.;

- Marshall, W. J.; Unverzagt, M. Tetrahedron 1999, 55, 14523.
- 2. Wang, Y.; Xie, Y.; Abraham, M.Y.; Gilliard, R.J.; Wei, P.; Campana, C.F.; Schaefer,
- H.F.; Schaefer, P.v. R.; Robinson, G.H., J. Am. Chem. Soc. 2010, 132, 14370.
- 3. Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer III, H.
- F.; Schleyer, P. v. R.; Robinson, G. H., J. Am. Chem. Soc. 2007, 129, 12412.

SUPPORTING INFORMATION OF X-RAY

Compound	4	5·THF	6 · (toluene) _{0.5}
Empirical formula	C45H74N2O3BLi	C ₃₁ H ₄₄ N ₂ OGaCl ₃	$C_{34.5}H_{49}N_2B_1Ga_1Cl_3$
Formula weight	708.81	636.75	678.63
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Lattice parameters			
a (Å)	23.735(2)	11.4236(6)	9.4189(15)
b (Å)	10.4695(10)	20.7234(11)	20.580(3)
c (Å)	18.5654(17)	29.0681(16)	19.841(3)
α (deg)	90	90	90
β (deg)	90	90	102.730(3)
γ (deg)	90	90	90
V (Å ³)	4613.4(7)	6881.5(6)	3751.4(10)
Space group	Pca2(1)	Pbca	P21/c
Z value	4	8	2
$\rho_{calc} \left(g \ / \ cm^3\right)$	1.020	1.229	1.202
μ (Mo Kα) (mm ⁻¹)	0.061	1.057	0.971
Temperature (K)	296(2)	296(2)	296(2)
$2\Theta_{\max}$ (°)	50.496	52.896	52.044
No. Obs. ($I > 2\sigma(I)$)	8405	7085	7389
No. Parameters	662	347	431
Goodness of fit (GOF)	1.018	1.016	1.055
Max. shift in cycle	0.001	0.001	0.001
Residuals*: R1; wR2	0.0584; 0.1268	0.0470; 0.1181	0.0602; 0.1670
Absorption Correction, Max/min	Multi-scan 0.7454 / 0.6819	Multi-scan 0.7454 / 0.6288	Multi-scan 0.7454 / 0.5911
Largest peak in Final Diff. Map (e ⁻ / Å ³)	0.121	0.561	1.068

Table 1.	Crystallograph	ic Data for	Compounds 4.	5 and 6.

^a R = $\Sigma_{hkl}(||F_{obs}| - |F_{calc}||)/\Sigma_{hkl}|F_{obs}|; R_w = [\Sigma_{hkl}w(|F_{obs}| - |F_{calc}|)^2/\Sigma_{hkl}wF_{obs}^2]^{1/2}; w = 1/\sigma^2(F_{obs});$ GOF = $[\Sigma_{hkl}w(|F_{obs}| - |F_{calc}|)^2/(n_{data} - n_{vari})]^{1/2}.$

Compound 4

Table 2. Bond lengths [A] and angles [deg] for 4.

B(1)-C(32)	1.610(8)
B(1)-C(1)	1.676(7)
B(1)-C(28)	1.646(8)
B(1)-C(32')	1.632(18)
B(1)-C(30')	1 661(18)
B(1)-C(30)	1 671(8)
B(1)-C(28')	1 725(16)
$L_{i}(1) - O(1)$	1 93(3)
Li(1) - O(3)	1.987(15)
Li(1) - O(1')	2.05(2)
Li(1) - O(2)	2.053(18)
Li(1) - O(2')	2.023(10)
Li(1)-C(3)	2.151(9)
Li(1) - O(3')	2.19(3)
N(1)-C(1)	1 366(5)
N(1)-C(2)	1.300(5) 1.394(5)
N(1)-C(16)	1.391(3) 1 442(5)
N(2)-C(1)	1.712(5) 1.372(5)
N(2)-C(3)	1 420(6)
N(2)-C(4)	1 451(6)
C(2)-C(3)	1 363(7)
C(4)-C(5)	1.303(7) 1 397(7)
C(4)-C(9)	1.397(7)
C(5)-C(6)	1 381(8)
C(5)- $C(13)$	1 505(7)
C(6)-C(7)	1 372(9)
C(7)- $C(8)$	1.372(9) 1.382(9)
C(8)-C(9)	1 377(8)
C(9)- $C(10)$	1.520(8)
C(10)- $C(11)$	1.514(8)
C(10)- $C(12)$	1.532(9)
C(13)-C(14)	1.532(8)
C(13)-C(15)	1.509(8)
C(16)-C(21)	1.388(6)
C(16)-C(17)	1.401(7)
C(17)-C(18)	1.386(8)
C(17)-C(25)	1.505(7)
C(18)-C(19)	1.360(9)
C(19)-C(20)	1.367(9)
C(20)-C(21)	1.388(7)
C(21)-C(22)	1.503(7)
C(22)-C(23)	1.512(8)
C(22)-C(24)	1.531(7)
	· · ·

C(25)-C(26)	1.524(9)
C(25)-C(27)	1.535(8)
C(28)-C(29)	1.557(13)
C(30)-C(31)	1.513(10)
C(32)-C(33)	1.559(8)
C(28')-C(29')	1.530(18)
C(30')-C(31')	1.534(17)
C(32')-C(33')	1.530(19)
O(1)-C(34)	1.40(3)
O(1)-C(37)	1.41(3)
C(34)-C(35)	1 39(2)
C(35)-C(36)	1.25(2)
C(36)-C(37)	1.23(2) 1.43(2)
O(1')- $C(34')$	1.13(2) 1.41(2)
O(1') - C(37')	1.11(2) 1.43(3)
C(34')- $C(35')$	1.13(3) 1.379(17)
C(35') - C(35')	1.379(17) 1.278(10)
C(36') - C(37')	1.270(19) 1.430(10)
O(2) C(38)	1.459(19) 1.362(13)
O(2) - C(38) O(2) - C(41)	1.302(13) 1.422(14)
C(2) - C(41) C(28) C(20)	1.433(14) 1.423(17)
C(30) - C(39)	1.425(17) 1.205(18)
C(39)- $C(40)C(40)$ $C(41)$	1.303(18) 1.367(17)
O(2') C(28')	1.307(17) 1.37(2)
O(2) - C(38)	1.37(2) 1.43(2)
C(2) - C(41)	1.43(2) 1 30(2)
C(30) - C(39)	1.39(2) 1.32(3)
C(40') - C(40')	1.32(3) 1.35(3)
C(40) - C(41)	1.33(3) 1.322(15)
O(3) - C(43)	1.322(13) 1.451(16)
C(3) - C(42)	1.431(10) 1.542(19)
C(42) - C(43) C(42) - C(43)	1.342(10) 1.52(2)
C(43) - C(44) C(44) - C(45)	1.33(2) 1.407(17)
C(44) - C(45)	1.49/(17)
$O(3^{\circ})-C(45^{\circ})$	1.34(3)
$O(5^{\circ}) - O(42^{\circ})$	1.48(2) 1.52(2)
C(42) - C(43)	1.55(3)
$C(43^{\circ}) - C(44^{\circ})$	1.55(3)
$C(44^{\circ})-C(45^{\circ})$	1.50(3)
C(32)-B(1)-C(1)	112.3(4)
C(32)-B(1)-C(28)	112.3(5)
C(1)-B(1)-C(28)	109.6(4)
C(1)-B(1)-C(32')	118.7(8)
C(1)-B(1)-C(30')	111.9(9)
C(32')-B(1)-C(30')	113.4(13)
C(32)-B(1)-C(30)	110.6(5)
C(1)-B(1)-C(30)	107.1(4)
C(28)-B(1)-C(30)	104.5(4)
C(1)-B(1)-C(28')	111.3(11)
C(32')-B(1)-C(28')	103.1(14)
	× /

C(30')-B(1)-C(28')	95.4(13)
O(1)-Li(1)-O(3)	102.1(12)
O(1)-Li(1)-O(2)	93(3)
O(3)-Li(1)-O(2)	105.6(8)
O(1')-Li(1)-O(2')	110(2)
O(1)-Li(1)-C(3)	112.8(15)
O(3)-Li(1)-C(3)	127.1(6)
O(1')-Li(1)-C(3)	109.9(11)
O(2)-Li(1)-C(3)	110.8(6)
O(2')-Li(1)-C(3)	114.4(11)
O(1')-Li(1)-O(3')	112.7(15)
O(2')-Li(1)-O(3')	87 4(12)
C(3)-Li(1)-O(3')	1202(12)
C(1)-N(1)-C(2)	110.2(12)
C(1)-N(1)-C(16)	1314(4)
C(2)-N(1)-C(16)	131.4(4) 118 2(4)
C(2) - N(1) - C(10) C(1) - N(2) - C(3)	116.2(4)
C(1)-N(2)-C(3)	126.1(4)
C(1) - N(2) - C(4) C(3) N(2) C(4)	120.1(4) 117.6(4)
N(1) C(1) N(2)	117.0(4) 101.7(4)
N(1) - C(1) - N(2) N(1) - C(1) - R(1)	101.7(4) 127.1(4)
N(1)-C(1)-D(1) N(2) C(1) P(1)	127.1(4) 121 2(4)
C(2) - C(1) - D(1)	131.2(4) 1116(4)
C(3)-C(2)-N(1) C(2)-C(3)-N(2)	111.0(4) 00 0(1)
C(2) - C(3) - In(2) C(2) - C(3) - In(2)	122 8(5)
N(2) - C(3) - Li(1)	122.0(3) 137.3(4)
C(5) - C(4) - C(9)	137.3(4) 122.8(5)
C(5) - C(4) - C(5) C(5) - C(4) - N(2)	122.0(3) 118.6(4)
C(9)-C(4)-N(2)	118.0(4) 118.4(4)
C(4) - C(5) - C(6)	116.4(4)
C(4) - C(5) - C(0)	110.0(3) 123 1(5)
C(4)-C(3)-C(13)	123.1(3) 120.3(5)
C(0)-C(3)-C(13)	120.5(3) 121.6(6)
C(7) - C(0) - C(3)	121.0(0) 120.6(6)
C(0) - C(7) - C(8)	120.0(0) 120.2(6)
C(9) - C(0) - C(7)	120.2(0) 118.2(5)
C(8) - C(9) - C(4)	110.2(3)
C(8) - C(9) - C(10)	119.0(5)
C(4)- $C(9)$ - $C(10)$	122.9(5)
C(9)- $C(10)$ - $C(11)$	112.8(5)
C(9)-C(10)-C(12)	111.0(5)
C(11)- $C(10)$ - $C(12)$	108.8(5)
C(5)-C(13)-C(14)	112.5(5)
C(5)-C(13)-C(15)	111.3(5) 100.8(5)
C(14) - C(15) - C(15)	109.8(5)
C(21)- $C(16)$ - $C(17)$	121.5(4)
C(21)- $C(10)$ - $N(1)$	119.3(4)
C(17) - C(10) - N(1)	118.4(4)
C(18) - C(17) - C(16)	118.0(3) 118.2(5)
C(18) - C(17) - C(25)	118.3(5)
C(16)-C(17)-C(25)	123.6(5)

C(17)-C(18)-C(19)	120.7(6)
C(18)-C(19)-C(20)	120.9(5)
C(21)- $C(20)$ - $C(19)$	120.9(6)
C(21) C(20) C(15)	120.9(0) 117.0(5)
C(20)- $C(21)$ - $C(10)$	117.9(3) 110.4(5)
C(20)-C(21)-C(22)	119.4(5)
C(16)-C(21)-C(22)	122.7(4)
C(21)-C(22)-C(23)	109.9(4)
C(21)-C(22)-C(24)	112.8(5)
C(23)-C(22)-C(24)	110.1(5)
C(17)-C(25)-C(26)	110.9(5)
C(17)-C(25)-C(27)	112.2(5)
C(26)-C(25)-C(27)	110.6(6)
C(29)-C(28)-B(1)	1162(7)
C(31)- $C(30)$ - $B(1)$	118 3(6)
C(33)-C(32)-B(1)	113.1(6)
C(33)-C(32)-D(1) C(30') C(32') B(1)	113.1(0) 113.7(18)
C(23) - C(20) - D(1) C(21) - C(20) - D(1)	113.7(10) 116.1(17)
C(31)-C(30)-B(1)	110.1(17)
$C(33^{\circ})-C(32^{\circ})-B(1)$	11/.9(16)
C(34)-O(1)-C(37)	96(3)
C(34)-O(1)-Li(1)	118(2)
C(37)-O(1)-Li(1)	136(3)
O(1)-C(34)-C(35)	112.1(18)
C(36)-C(35)-C(34)	110(2)
C(35)-C(36)-C(37)	104.1(19)
O(1)-C(37)-C(36)	112.5(17)
C(34')-O(1')-C(37')	103(2)
C(34')-O(1')-Li(1)	120.8(14)
C(37')-O(1')-Li(1)	133.0(17)
O(1')-C(34')-C(35')	110.7(13)
C(36')-C(35')-C(34')	106.4(17)
C(35')-C(36')-C(37')	112.2(15)
O(1')-C(37')-C(36')	104.4(13)
C(38)-O(2)-C(41)	1044(11)
C(38)-O(2)-Li(1)	131.2(12)
C(41)- $O(2)$ -Li(1)	1244(12)
O(2) - C(38) - C(39)	124.4(12) 104.9(12)
C(40) C(30) C(38)	104.9(12) 112.7(15)
C(40)- $C(39)$ - $C(30)$	112.7(13) 105.0(14)
C(41)- $C(40)$ - $C(39)$	103.0(14) 100.6(12)
C(40)- $C(41)$ - $O(2)$	109.0(12) 105(2)
C(38) - O(2) - C(41)	105(2)
C(38')-O(2')-Li(1)	125(2)
C(41')-O(2')-Li(1)	130(2)
O(2')-C(38')-C(39')	109(2)
C(40')-C(39')-C(38')	109(2)
C(41')-C(40')-C(39')	109(2)
C(40')-C(41')-O(2')	109(2)
C(45)-O(3)-C(42)	109.1(10)
C(45)-O(3)-Li(1)	132.4(10)
C(42)-O(3)-Li(1)	118.5(11)
O(3)-C(42)-C(43)	105.7(12)

C(44)-C(43)-C(42)	100.5(13)
C(43)-C(44)-C(45)	106.7(13)
O(3)-C(45)-C(44)	109.1(12)
C(45')-O(3')-C(42')	108(2)
C(45')-O(3')-Li(1)	116(2)
C(42')-O(3')-Li(1)	135(2)
O(3')-C(42')-C(43')	100(2)
C(44')-C(43')-C(42')	94(3)
C(45')-C(44')-C(43')	99(2)
O(3')-C(45')-C(44')	108(2)

Symmetry transformations used to generate equivalent atoms:

Compound **5**

Table 3. Bond lengths [A] and angles [deg] for $\mathbf{5}\boldsymbol{\cdot}\mathbf{THF}.$

Ga(1)-C(3)	1 978(3)
Ga(1)-Cl(3)	2.1480(11)
$G_{a}(1)$ - $C_{a}(1)$	2.1636(12)
$G_{a}(1) - Cl(2)$	2.1050(12) 2.1864(12)
N(1) C(1)	2.1004(12) 1 221(4)
N(1) - C(1)	1.521(4) 1.280(4)
N(1) - C(2)	1.380(4)
N(1)-C(16)	1.45/(3)
N(2)-C(1)	1.330(4)
N(2)-C(3)	1.404(4)
N(2)-C(4)	1.457(4)
C(2)-C(3)	1.350(4)
C(4)-C(5)	1.387(5)
C(4)-C(9)	1.388(5)
C(5)-C(6)	1.399(6)
C(5)-C(13)	1.510(6)
C(6)-C(7)	1.337(7)
C(7)-C(8)	1.360(7)
C(8)-C(9)	1.420(5)
C(9)-C(10)	1.514(6)
C(10)-C(12)	1.536(5)
C(10)-C(11)	1.528(6)
C(13)-C(14)	1.533(6)
C(13)-C(15)	1.528(6)
C(16)-C(17)	1.398(4)
C(16)-C(21)	1.386(4)
C(17)-C(18)	1.388(5)
C(17)-C(25)	1.515(5)
C(18)-C(19)	1.368(5)
C(19)-C(20)	1.360(5)
C(20)-C(21)	1 387(4)
C(21)-C(22)	1.518(5)
C(22)-C(24)	1.523(5)
C(22)-C(23)	1.523(5)
C(25) - C(27)	1.825(6)
C(25) - C(26)	1.100(0) 1.513(7)
O(1) - C(31)	1.313(7)
O(1) - C(28)	1.393(0) 1 300(7)
C(28) - C(29)	1.399(7) 1.445(0)
C(20) - C(20)	1.445(9) 1.415(0)
C(29) - C(30) C(20) - C(21)	1.413(9) 1.460(8)
C(30)-C(31)	1.409(8)
C(3)-Ga(1)-Cl(3)	113.80(9)
C(3)-Ga(1)-Cl(1)	114.33(9)
Cl(3)-Ga(1)-Cl(1)	106.92(5)

C(3)-Ga(1)-Cl(2)	103.33(9)
Cl(3)- $Ga(1)$ - $Cl(2)$	109.21(6)
Cl(1)- $Ga(1)$ - $Cl(2)$	109.10(6)
C(1)-N(1)-C(2)	107.9(2)
C(1)-N(1)-C(16)	126.0(2)
C(2)-N(1)-C(16)	126.0(2)
C(1)-N(2)-C(3)	109.6(2)
C(1)-N(2)-C(4)	122.4(3)
C(3)-N(2)-C(4)	128.0(2)
N(1)-C(1)-N(2)	108 9(3)
C(3)-C(2)-N(1)	1094(3)
C(2)-C(3)-N(2)	1043(2)
C(2)- $C(3)$ - $Ga(1)$	1243(2)
N(2)-C(3)-Ga(1)	121.3(2) 1314(2)
C(5)-C(4)-C(9)	124.8(3)
C(5) - C(4) - N(2)	121.0(3) 1180(3)
C(9)-C(4)-N(2)	117.0(3)
C(4)-C(5)-C(6)	117.2(3) 116 $A(A)$
C(4)-C(5)-C(13)	1235(3)
C(4)-C(3)-C(13)	123.3(3) 120.0(4)
C(0)-C(3)-C(13)	120.0(4) 120.6(5)
C(7) - C(0) - C(3)	120.0(3) 122 6(4)
C(0)-C(7)-C(8)	122.0(4) 120.5(4)
C(4) - C(8) - C(8)	120.3(4) 115.0(4)
C(4) - C(9) - C(8)	113.0(4) 123.1(3)
C(4) - C(9) - C(10)	123.1(3) 121.0(4)
C(0) - C(10) - C(10)	121.9(4) 112.8(4)
C(9) - C(10) - C(12)	113.6(4) 110.6(4)
C(12) C(10) - C(11)	110.0(4) 100.6(4)
C(12) - C(10) - C(11)	109.0(4) 112.8(4)
C(5) - C(13) - C(14)	112.0(4) 110.0(4)
C(3)-C(13)-C(13)	110.0(4) 110.2(4)
C(14)-C(15)-C(15)	110.2(4) 122.8(2)
C(17)- $C(16)$ - $C(21)$	123.0(3) 119.1(2)
C(17)-C(10)-N(1) C(21)-C(16)-N(1)	118.1(3) 118.1(2)
C(21)- $C(10)$ - $N(1)$	118.1(3) 115.7(2)
C(16)-C(17)-C(18)	115.7(3)
C(16)-C(17)-C(25)	123.2(3)
C(18)-C(17)-C(25)	121.1(3)
C(19)-C(18)-C(17)	121.7(3)
C(18)-C(19)-C(20)	121.0(3)
C(19)-C(20)-C(21)	120.7(4)
C(16)-C(21)-C(20)	117.1(3)
C(16)-C(21)-C(22)	123.1(3)
C(20)-C(21)-C(22)	119.7(3)
C(21)-C(22)-C(24)	111.6(3)
C(21)-C(22)-C(23)	111.1(3)
C(24)-C(22)-C(23)	111.1(4)
C(27)-C(25)-C(17)	111.9(4)
C(27)-C(25)-C(26)	106.7(4)
C(17)-C(25)-C(26)	112.1(4)

C(31)-O(1)-C(28)	108.0(4)
O(1)-C(28)-C(29)	107.4(6)
C(28)-C(29)-C(30)	107.1(6)
C(31)-C(30)-C(29)	106.3(5)
O(1)-C(31)-C(30)	107.5(5)

Symmetry transformations used to generate equivalent atoms:

Compound 6

Table 4. Bond lengths [A] and angles [deg] for compound $6 \cdot (toluene)_{0.5}$.

Ga(1)-C(1)	2.035(4)
Ga(1)- $Cl(3)$	2.185(3)
Ga(1)-Cl(1)	2.126(3)
Ga(1)-Cl(2)	2.141(4)
Ga(1')-Cl(1')	2.189(10)
Ga(1')-C(1)	2.109(10) 2.019(5)
Ga(1')-Cl(2')	2.019(0) 2.154(11)
Ga(1')-Cl(3')	2.100(10)
N(1)-C(1)	1.354(4)
N(1)-C(2)	1 362(4)
N(1)-C(16)	1.459(4)
N(2)-C(1)	1.341(4)
N(2)-C(3)	1.408(4)
N(2)-C(4)	1.458(4)
C(2)-C(3)	1.350(5)
C(3)-B(1)	1.576(5)
C(4)-C(9)	1.388(5)
C(4)-C(5)	1.396(5)
C(5)-C(6)	1.393(6)
C(5)-C(13)	1.513(6)
C(6)-C(7)	1.355(7)
C(7)-C(8)	1.363(7)
C(8)-C(9)	1.408(6)
C(9)-C(10)	1.496(6)
C(10)-C(11)	1.517(7)
C(10)-C(12)	1.511(8)
C(13)-C(14)	1.491(8)
C(13)-C(15)	1.497(7)
C(16)-C(21)	1.394(5)
C(16)-C(17)	1.392(5)
C(17)-C(18)	1.394(5)
C(17)-C(25)	1.508(6)
C(18)-C(19)	1.364(6)
C(19)-C(20)	1.347(7)
C(20)-C(21)	1.410(5)
C(21)-C(22)	1.507(6)
C(22)-C(24)	1.536(6)
C(22)-C(23)	1.544(6)
C(25)-C(27)	1.506(7)
C(25)-C(26)	1.534(8)
B(1)-C(31)	1.524(6)
B(1)-C(29)	1.572(7)
C(28)-C(29)	1.441(9)

C(30)-C(31)	1.503(6)
C(32)-C(33)	1.3900
C(32)-C(34)	1 3900
C(32)- $C(35)$	1 466(16)
C(32) - C(33)	1.400(10)
C(33)-C(34A)	1.3900
C(34A)-C(32A)	1.3900
C(32A)-C(33A)	1.3900
C(33A)-C(34)	1.3900
$C(1) C_{2}(1) C(2)$	104 61(16)
C(1) - Ca(1) - Cl(3)	104.01(10)
C(1)-Ga(1)-Cl(1)	113.03(15)
CI(3)-Ga(1)-CI(1)	108.53(15)
C(1)-Ga(1)-Cl(2)	111.9(2)
Cl(3)- $Ga(1)$ - $Cl(2)$	108.1(3)
Cl(1)-Ga(1)-Cl(2)	110.4(2)
Cl(1')-Ga(1')-C(1)	109.5(4)
Cl(1')-Ga(1')-Cl(2')	103.0(7)
C(1)-Ga(1')-Cl(2')	115.9(5)
C(1')- $Ga(1')$ - $C(3')$	107.6(6)
C(1)-G ₂ (1')-Cl(3')	1123(4)
C(1)=Oa(1)=O(3)	1080(7)
C(1) N(1) C(2)	100.0(7) 100.0(2)
C(1)-N(1)-C(2) C(1) N(1) $C(16)$	109.9(3) 126.0(2)
C(1)-N(1)-C(10) C(2) N(1) C(10)	120.9(3) 122.0(2)
C(2)-N(1)-C(10)	122.9(3)
C(1)-N(2)-C(3)	111./(3)
C(1)-N(2)-C(4)	125.1(3)
C(3)-N(2)-C(4)	123.0(3)
N(2)-C(1)-N(1)	105.2(3)
N(2)-C(1)-Ga(1)	129.4(2)
N(1)-C(1)-Ga(1)	125.0(2)
N(2)-C(1)-Ga(1')	129.6(2)
N(1)-C(1)-Ga(1')	125.2(2)
N(1)-C(2)-C(3)	109.6(3)
C(2)-C(3)-N(2)	103.6(3)
C(2)-C(3)-B(1)	125.5(3)
N(2)-C(3)-B(1)	130.9(3)
C(9)-C(4)-C(5)	124 7(3)
C(9)-C(4)-N(2)	1187(3)
C(5)-C(4)-N(2)	116.7(3)
$C(5) C(4) \Gamma(2)$ C(6) C(5) C(4)	116.3(3)
C(6)-C(5)-C(13)	110.2(4) 120 5(4)
C(0)- $C(5)$ - $C(13)$	120.3(4) 122.4(2)
C(4)- $C(5)$ - $C(15)$	123.4(3) 121.1(5)
C(7) - C(6) - C(5)	121.1(5) 121.2(4)
C(6)-C(7)-C(8)	121.3(4)
C(7)-C(8)-C(9)	121.5(5)
C(4)-C(9)-C(8)	115.1(4)
C(4)-C(9)-C(10)	123.7(4)
C(8)-C(9)-C(10)	121.2(4)
C(9)-C(10)-C(11)	111.5(5)
C(9)-C(10)-C(12)	112.3(5)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} C(23) C(27) D(1) & 100.1(0) \\ B(1)-C(31)-C(30) & 121.1(5) \\ C(33) C(32) C(34) & 120.0 \end{array}$	
$\begin{array}{c} C(33)-C(32)-C(34) & 120.0 \\ C(33)-C(32)-C(35) & 121.0(15) \\ C(34)-C(32)-C(35) & 118.9(15) \end{array}$	
$\begin{array}{c} C(34) C(32) C(35) & 110.9(15) \\ C(34A) - C(33) - C(32) & 120.0 \\ C(22) C(24A) C(22A) & 120.0 \\ \end{array}$	
C(33)-C(34A)-C(32A) 120.0 C(34A)-C(32A)-C(33A) 120.0	
C(32A)-C(33A)-C(34) 120.0 C(33A)-C(34)-C(32) 120.0	

Symmetry transformations used to generate equivalent atoms:

Figure 1. A moderate C–H···O hydrogen bond [distance (C···O) = 3.031 Å; C–H···O bond angle = 167°] between the C(1)–H(1A) unit of **5** and the O atom of THF solvent molecule.