Supporting Information S1-S7 for

Synthesis, Structure, and a Nucleophilic Coordination Reaction of Germanetellurones

Bin Li,^a Yan Li,^a Na Zhao,^a Yuefei Chen,^a Yujue Chen,^a Gang Fu,^a Hongping Zhu^{*,a} and Yuqiang Ding^{*,b}

 ^a State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
 ^b School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 224161, China

I. Crystal data collection and structural refinement details

	1	2 ₂	4 ^b	5 ₂
formula	$C_{34}H_{46}GeN_2$	$C_{82}H_{100}Fe_2Ge_2N_4$	C ₃₄ H ₄₆ GeN ₂ Te	$C_{82}H_{100}Fe_2Ge_2N_4Te_2$
fw	555.32	1398.54	682.92	1653.74
cryst syst	Monoclinic	Triclinic	Orthorhombic	Monoclinic
space group	$P2_{1}/n$	<i>P</i> -1	$Pna2_1$	$P2_{1}/c$
a/Å	13.4531(5)	14.148(3)	16.739(3)	12.8840(5)
b/Å	16.6254(5)	17.098(3)	9.7212(19)	18.4790(13)
c/Å	14.7792(5)	17.556(4)	20.247(4)	31.6633(14)
α/deg		107.85(3)		
β/deg	110.700(4)	110.20(3)		90.677(4)
γ/deg		97.91(3)		
$V/\text{\AA}^3$	3092.17(18)	3650.4(13)	3294.6(11)	7538.0(7)
Ζ	4	2	4	4
$ ho_{ m calcd}/ m g\cdot m cm^{-3}$	1.193	1.272	1.377	1.457
μ/mm^{-1}	1.014	1.250	1.821	1.971
<i>F</i> (000)	1184	1472	1392	3360
crystal size/mm ³	0.45×0.40×0.20	0.49×0.20×0.16	0.40×0.40×0.10	0.30×0.20×0.12
θ range/deg	2.82-26.00	2.99–27.47	3.15-26.00	2.71-26.00
	$-16 \le h \le 16$	$-18 \le h \le 18$	$-20 \le h \le 18$	$-15 \le h \le 15$
index ranges	$-20 \le k \le 17$	$-22 \leq k \leq 22$	$-11 \le k \le 11$	$-22 \le k \le 22$
	$-18 \le l \le 11$	$-22 \le l \le 22$	$-24 \le l \le 24$	$-39 \le l \le 38$
collected data	13154	57128	25512	44382
unique data	6062	16498	6445	14765
	$(R_{\rm int} = 0.0238)$	$(R_{\rm int} = 0.0630)$	$(R_{\rm int} = 0.0402)$	$(R_{\rm int} = 0.0904)$
completeness to θ (%)	99.6	98.6	99.8	99.8
data/restraints/params	6062/0/344	16498/942/931	6445/426/329	14765/380/875
GOF on F^2	1.027	1.095	1.047	0.999
final R indices $[I > 2]$	$R_1 = 0.0309$	$R_1 = 0.0375$	$R_1 = 0.0404$	$R_1 = 0.0657$
(I)]	$wR_2 = 0.0727$	$wR_2 = 0.0821$	$wR_2 = 0.0982$	$wR_2 = 0.0831$
<i>R</i> indices (all data)	$R_1 = 0.0391$	$R_1 = 0.0654$	$R_1 = 0.0528$	$R_1 = 0.1233$

Table 1s. For compounds 1, 2, 4, and 5

	$wR_2 = 0.0755$	$wR_2 = 0.1029$	$wR_2 = 0.1049$	$wR_2 = 0.0972$
Largest diff peak/hole (e·Å ⁻³)	0.311/-0.288	0.955/-0.779	0.751/-0.719	0.850/-0.845

^{*a*} All data were collected at 173(2) K using Mo K_{α} ($\lambda = 0.71073$ Å) radiation. $R_1 = \sum(||F_o| - |F_c||)/\sum |F_o|$, $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)]^{1/2}$, GOF = $[\sum w(F_o^2 - F_c^2)^2 / (N_o - N_p)]^{1/2}$. ^b The data recorded here for **4** is corresponding to structure **4a** (Figure 2s). The data for structure **4b** are slightly changed after final refinements ($wR_2 = 0.0983$ and largest diff peak/hole (e·Å⁻³) is 0.753/-0.714. The others are the same).

Table 2s. For compounds 6–9^{*a*}

	6 ·0.5 <i>n</i> -hexane	7 ^c	8	9
formula	C ₄₀ H ₅₃ GeN ₂ Te	C ₃₄ H ₄₆ Cl ₂ Ge ₂ N ₂ Te	C ₃₆ H ₄₄ AuF ₅ GeN ₂ S	C ₃₆ H ₄₄ AuF ₅ GeN ₂ S
				e
fw	762.03	826.41	901.35	948.25
cryst syst	Monoclinic	Monoclinic	Triclinic	Triclinic,
space group	$P2_1/n$	$P2_1/n$	<i>P</i> -1	<i>P</i> -1
a/Å	12.9507(8)	9.7181(7)	10.1603(4)	10.224(2)
b/Å	18.5924(10)	18.7331(13)	12.8671(7)	12.966(3)
c/Å	17.3739(9)	19.6618(12)	15.0468(9)	15.085(3)
α/deg			66.571(5)	66.54(3)
β/deg	92.59(3)	90.562(6)	74.778(4)	74.75(3)
γ/deg			84.434(4)	84.32(3)
$V/\text{\AA}^3$	4091.5(4)	3579.3(4)	1741.55(16)	1770.0(6)
Ζ	4	4	2	2
$\rho_{\rm calcd}/g\cdot \rm cm^{-3}$	1.237	1.534	1.719	1.779
μ/mm^{-1}	1.474	2.652	5.185	1.779
<i>F</i> (000)	1564	1656	892	928
crystal size/mm ³	0.30×0.30×0.10	0.15×0.10×0.02	0.40×0.20×0.10	0.15×0.10×0.03
θ range/deg	3.10-26.00	3.02-26.00	2.69-26.00	3.00-25.00
index ranges	$-15 \le h \le 14$	$-11 \le h \le 11$	$-12 \le h \le 12$	$-12 \le h \le 12$
	$-21 \le k \le 22$	$-11 \le k \le 23$	$-15 \le k \le 15$	$-15 \le k \le 15$
	$-12 \le l \le 21$	$-14 \le l \le 24$	$-18 \le l \le 18$	$-17 \le l \le 17$
collected data	17544	14585	20968	13709
unique data	8008	7008	6838	6137
	$(R_{\rm int} = 0.0551)$	$(R_{\rm int} = 0.0998)$	$(R_{\rm int} = 0.0982)$	$(R_{\rm int} = 0.1559)$
completeness to θ (%)	99.7	99.7	99.9	98.6
data/restraints/params	8008/5/436	7008/0/370	6838/0/426	6137/12/421
GOF on F^2	0.990	0.999	1.010	1.054
final R indices $[D_2(D)]$	$R_1 = 0.0604$	$R_1 = 0.0798$	$R_1 = 0.0574$	$R_1 = 0.1095$
$\lim_{t \to \infty} 1 - 2 (1) $	$wR_2 = 0.1272$	$wR_2 = 0.1018$	$wR_2 = 0.1016$	$wR_2 = 0.2437$
<i>R</i> indices (all data)	$R_1 = 0.1016$	$R_1 = 0.1561$	$R_1 = 0.0799$	$R_1 = 0.1803$
	$wR_2 = 0.1423$	$wR_2 = 0.1195$	$wR_2 = 0.1099$	$wR_2 = 0.3055$
Largest diff peak/hole (e·Å ⁻³)	0.713/-0.393	0.876/-1.169	1.736 / -1.275	2.288/-4.812

^{*a*} All data were collected at 173(2) K using Mo K_{*a*} ($\lambda = 0.71073$ Å) radiation. $R_1 = \sum (||F_o| - |F_c||) / \sum |F_o|$, $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)]^{1/2}$, GOF = $[\sum w(F_o^2 - F_c^2)^2 / (N_o - N_p)]^{1/2}$. ^c The data recorded here for 7 is corresponding to structure **7a** (Figure 3s). The data for structure **7b** are not changed after final refinements.

II. Crystal structures of Cp-bonded compounds 1, 4 and 7

Figure 1s. X-ray crystal structure of **1.** Thermal ellipsoids are drawn at 50% probability level. H atoms at the Cp group are enhanced for clarity.

Figure 2s. X-ray crystal structures of **4** with two different hydrogen addition modes over the Cp ring corresponding to isomeric structures **4a** (left) and **4b** (right) shown in the text. Thermal ellipsoids are drawn at 50% probability level.

Figure 3s. X-ray crystal structures of 7 with two different hydrogen addition modes over the Cp ring corresponding to isomeric structures 7a (left) and 7b (right). Thermal ellipsoids are drawn at 50% probability level.

III. Variable temperature (25–80 °C) ¹H NMR spectral studies of compound 4

Figure 4s. Exhibition of a series of ¹H NMR spectra of compound 4 recorded in C_6D_6 at elevated temperatures.

Figure 5s. Exhibition of the enhanced resonances for the L ligand backbone γ -CH proton of compound **4** at δ 4.77–5.02 ppm in Figure 4s.

IV. UV-vis spectra of compounds 1 and 2

Figure 6s. UV-vis spectra of compounds 1 (black, λ_{max} (peak), 320, 366 nm) and 2 (red, λ_{max} (peak), 287, 344 nm) recorded in toluene at room temperature (1×10⁻⁵mol/L).

IV. DFT calculations

Computational details: All quantum-chemical calculations were carried out by using the Gaussian 09 program.¹ Geometry optimization for compound LGeR (R = Cp, C=CH) was performed by using B3LYP/6-31+G(d)²⁻⁶ and that for LGe(Te)R (R = Cp, C=CH) was adopted on Stuttgart RSC 1997 ECP (to simplify the calculation, we use the H group instead of the Fc and Ph group).⁷ Vibrational frequencies were calculated to ensure the optimized structure. Charge analyses were performed by using the natural bond orbital (NBO) program.⁸ Computationally, it seems too difficult to directly calculate the enthalpies of reaction of LGeR with Te to form germanetellurone (eq (1)) because Te is

used as a solid powder. But, the bond disassociation energy (BDE) of Ge=Te could be calculated on considering the Te atom (the standard enthalpy value, 47.1 kcal/mol, has been experimentally determined⁹) according to eq (2) and (3).

 $LGeR + Te(s) \rightarrow LGe(Te)R \quad (1)$ $LGeR + Te \text{ atom (triplet)} \rightarrow LGe(Te)R \quad (2)$ $BDE_{Ge=Te} = \Delta H_{LGe(Te)R} - \Delta H_{LGeR} - \Delta H_{Te \text{ atom}} \quad (3)$ $\Delta H_{rxn} = BDE_{Ge=Te} + \Delta H_{f(Te \text{ atom})} \quad (4)$

Figure 7s. HOMO orbital picture of LGeR

Scheme 1s. Three possible isomeric structures of compound 4 (Relative energies (kcal/mol), -2.5 for isomer 4a, -1.0 for 4b, and 0.0 for 4c)

Table 3s. NBC	analysis for	LGeR (L =	HC[C(Me)N-2	$,6-i\Pr_2C_6H_3]_2$
---------------	--------------	-----------	-------------	----------------------

		Characteristics of lone pair of Ge			
R	NBO Charge of Ge	Occupation	Composition (%)		
			S	р	d
Ср	+1.047	1.967	86.5	13.5	0.0
С≡СН	+0.983	1.943	77.5	22.5	0.0

Table 4s. NBO analysis of LGe(Te)R ($L = HC[C(Me)N-2,6-iPr_2C_6H_3]_2$)

	NBO cha	arge		Characteristics of the Ge–Te bond				
R	Ga	Та	an (eV)	Occupation	Contributions	Comp	osition	n (%)
_	Ue	IC	gap (ev)		(%)	S	р	d
Ср	+1.385	-0.543	2.73	1.932	Ge: 51.2	44.3	55.3	0.4
					Te: 48.8	11.1	88.9	0.0
C≡CH	+1.280	-0.454	2.80	1.944	Ge: 54.7	51.4	48.3	0.3
					Te: 45.3	10.6	89.4	0.0

Table 5s. Calculated enthalpies for reactions of LGeR with Te to LGe(Te)R

R	Bond disassociation energy (Ge=Te, kcal/mol)	ΔH _{rxn} (kcal/mol)
Ср	47.1	0.0
С≡СН	50.2	-3.1

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford, CT 200 (2009).
- 2 S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200.
- 3 A. D. Becke, *Phys. Rev. A*,1988, **38**, 3098.
- 4 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 5 C. T. Lee, W. T. Yang and R.G. Parr, *Phys. Rev. B*,1988, **37**, 785.
- 6 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257.
- 7 M. Dolg, H. Stoll, H. Preuss and R. M. Pitzer, J. Phys. Chem., 1993, 97, 5852 and these basis sets and ECPs correspond to Revision: Fri Jun 27 1997 of the Stuttgart/Dresden groups.
- 8 A. E. Reed and F. Weinhold, J. Chem. Phys. 1983, 78, 4066.
- 9 Experimental value taken from http://www.wiredchemist.com/chemistry/data/enthalpies.