Supporting Information S1-S7 for

Synthesis, Structure, and a Nucleophilic Coordination Reaction of Germanetellurones

Bin Li, ${ }^{a}$ Yan Li, ${ }^{a}$ Na Zhao, ${ }^{a}$ Yuefei Chen, ${ }^{a}$ Yujue Chen, ${ }^{a}$ Gang Fu, ${ }^{a}$ Hongping Zhu*, ${ }^{*}$ and Yuqiang Ding* ${ }^{\text {b }}$
${ }^{\text {a }}$ State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
${ }^{\mathrm{b}}$ School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 224161, China

I. Crystal data collection and structural refinement details

Table 1s. For compounds 1, 2, 4, and 5

	1	$2{ }_{2}$	$4^{\text {b }}$	$5{ }_{2}$
formula	$\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{GeN}_{2}$	$\mathrm{C}_{82} \mathrm{H}_{100} \mathrm{Fe}_{2} \mathrm{Ge}_{2} \mathrm{~N}_{4}$	$\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{GeN}_{2} \mathrm{Te}$	$\mathrm{C}_{82} \mathrm{H}_{100} \mathrm{Fe}_{2} \mathrm{Ge}_{2} \mathrm{~N}_{4} \mathrm{Te}_{2}$
fw	555.32	1398.54	682.92	1653.74
cryst syst	Monoclinic	Triclinic	Orthorhombic	Monoclinic
space group	$P 2_{1} / n$	$P-1$	Pna2 ${ }_{1}$	$P 2{ }_{1} / c$
a / \AA ¢	13.4531(5)	14.148(3)	16.739(3)	12.8840(5)
b / \AA	16.6254(5)	17.098(3)	9.7212(19)	18.4790(13)
c / \AA A	14.7792(5)	17.556(4)	20.247(4)	31.6633(14)
$\alpha /$ deg		107.85(3)		
$\beta /$ deg	110.700(4)	110.20(3)		90.677(4)
γ / deg		97.91(3)		
V / \AA^{3}	3092.17(18)	3650.4(13)	3294.6(11)	7538.0(7)
Z	4	2	4	4
$\rho_{\text {calcd }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.193	1.272	1.377	1.457
μ / mm^{-1}	1.014	1.250	1.821	1.971
$F(000)$	1184	1472	1392	3360
crystal size $/ \mathrm{mm}^{3}$	$0.45 \times 0.40 \times 0.20$	$0.49 \times 0.20 \times 0.16$	$0.40 \times 0.40 \times 0.10$	$0.30 \times 0.20 \times 0.12$
θ range/deg	$2.82-26.00$	2.99-27.47	3.15-26.00	$2.71-26.00$
	$-16 \leq h \leq 16$	$-18 \leq h \leq 18$	$-20 \leq h \leq 18$	$-15 \leq h \leq 15$
index ranges	$-20 \leq k \leq 17$	$-22 \leq k \leq 22$	$-11 \leq k \leq 11$	$-22 \leq k \leq 22$
	$-18 \leq l \leq 11$	$-22 \leq l \leq 22$	$-24 \leq l \leq 24$	$-39 \leq l \leq 38$
collected data	13154	57128	25512	44382
unique data	6062	16498	6445	14765
	$\left(R_{\text {int }}=0.0238\right)$	$\left(R_{\text {int }}=0.0630\right)$	$\left(R_{\text {int }}=0.0402\right)$	$\left(R_{\text {int }}=0.0904\right)$
completeness to θ (\%)	99.6	98.6	99.8	99.8
data/restraints/params	6062/0/344	16498/942/931	6445/426/329	14765/380/875
GOF on F^{2}	1.027	1.095	1.047	0.999
final R indices [$I>2$	$R_{1}=0.0309$	$R_{1}=0.0375$	$R_{1}=0.0404$	$R_{1}=0.0657$
(I)]	$w R_{2}=0.0727$	$w R_{2}=0.0821$	$w R_{2}=0.0982$	$w R_{2}=0.0831$
R indices (all data)	$R_{1}=0.0391$	$R_{1}=0.0654$	$R_{1}=0.0528$	$R_{1}=0.1233$

	$w R_{2}=0.0755$	$w R_{2}=0.1029$	$w R_{2}=0.1049$	$w R_{2}=0.0972$
Largest diff peak/hole $\left(\mathrm{e} \cdot \AA^{-3}\right)$	$0.311 /-0.288$	$0.955 /-0.779$	$0.751 /-0.719$	$0.850 /-0.845$

${ }^{a}$ All data were collected at $173(2) \mathrm{K}$ using Mo $\mathrm{K}_{a}(\lambda=0.71073 \AA)$ radiation. $R_{1}=\sum\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \sum\left|F_{\mathrm{o}}\right|$, $w R_{2}=\left[\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \sum w\left(F_{\mathrm{o}}{ }^{2}\right)\right]^{1 / 2}, \mathrm{GOF}=\left[\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{p}}\right)\right]^{1 / 2}$. ${ }^{\mathrm{b}}$ The data recorded here for $\mathbf{4}$ is corresponding to structure $\mathbf{4 a}$ (Figure 2 s). The data for structure $\mathbf{4 b}$ are slightly changed after final refinements ($w R_{2}=0.0983$ and largest diff peak/hole $\left(\mathrm{e} \cdot \AA^{-3}\right)$ is $0.753 /-0.714$. The others are the same).

Table 2s. For compounds 6-9 ${ }^{\text {a }}$

	6.0.5n-hexane	$7{ }^{\text {c }}$	8	9
formula	$\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{GeN}_{2} \mathrm{Te}$	$\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{Ge}_{2} \mathrm{~N}_{2} \mathrm{Te}$	$\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{AuF}_{5} \mathrm{GeN}_{2} \mathrm{~S}$	$\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{AuF}_{5} \mathrm{GeN}_{2} \mathrm{~S}$
fw	762.03	826.41	901.35	948.25
cryst syst	Monoclinic	Monoclinic	Triclinic	Triclinic,
space group	$P 2_{1} / n$	$P 21_{1} / n$	$P-1$	$P-1$
a / \AA	12.9507(8)	9.7181(7)	10.1603(4)	10.224(2)
b/A	18.5924(10)	18.7331(13)	12.8671(7)	12.966 (3)
c/A	17.3739(9)	19.6618(12)	15.0468(9)	15.085(3)
α / deg			66.571(5)	66.54(3)
$\beta /$ deg	92.59(3)	90.562(6)	74.778(4)	74.75(3)
$\gamma /$ deg			84.434(4)	84.32(3)
V / \AA^{3}	4091.5(4)	3579.3(4)	1741.55(16)	1770.0(6)
Z	4	4	2	2
$\rho_{\text {calce }} / g \cdot \mathrm{~cm}^{-3}$	1.237	1.534	1.719	1.779
μ / mm^{-1}	1.474	2.652	5.185	1.779
$F(000)$	1564	1656	892	928
crystal size/ mm^{3}	$0.30 \times 0.30 \times 0.10$	$0.15 \times 0.10 \times 0.02$	$0.40 \times 0.20 \times 0.10$	$0.15 \times 0.10 \times 0.03$
θ range/deg	3.10-26.00	3.02-26.00	2.69-26.00	3.00-25.00
index ranges	$-15 \leq h \leq 14$	$-11 \leq h \leq 11$	$-12 \leq h \leq 12$	$-12 \leq h \leq 12$
	$-21 \leq k \leq 22$	$-11 \leq k \leq 23$	$-15 \leq k \leq 15$	$-15 \leq k \leq 15$
	$-12 \leq l \leq 21$	$-14 \leq l \leq 24$	$-18 \leq l \leq 18$	$-17 \leq l \leq 17$
collected data	17544	14585	20968	13709
unique data	8008	7008	6838	6137
	$\left(R_{\text {int }}=0.0551\right)$	$\left(R_{\text {int }}=0.0998\right)$	($R_{\text {int }}=0.0982$)	$\left(R_{\text {int }}=0.1559\right)$
completeness to θ (\%)	99.7	99.7	99.9	98.6
data/restraints/params	8008/5/436	7008/0/370	6838/0/426	6137/12/421
GOF on F^{2}	0.990	0.999	1.010	1.054
final R indices [$1>2(I)$]	$R_{1}=0.0604$ $w R_{2}=0.1272$	$R_{1}=0.0798$ $w R_{2}=0.1018$	$R_{1}=0.0574$ $w R_{2}=0.1016$	$R_{1}=0.1095$
fnal R indices [$1>2$ ($)$]	$w R_{2}=0.1272$	$w^{2} R_{2}=0.1018$	$w R_{2}=0.1016$	$w^{2} R_{2}=0.2437$
R indices (all data)	$R_{1}=0.1016$	$R_{1}=0.1561$	$R_{1}=0.0799$	$R_{1}=0.1803$
	$w R_{2}=0.1423$	$w R_{2}=0.1195$	$w R_{2}=0.1099$	$w R_{2}=0.3055$
Largest diff peak/hole (e. $\cdot \AA^{-3}$)	0.713/-0.393	0.876/-1.169	1.736 / -1.275	2.288/-4.812

${ }^{a}$ All data were collected at $173(2) \mathrm{K}$ using $\mathrm{Mo} \mathrm{K}_{a}(\lambda=0.71073 \AA)$ radiation. $R_{1}=\sum\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \sum\left|F_{\mathrm{o}}\right|$, $w R_{2}=\left[\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \sum w\left(F_{\mathrm{o}}{ }^{2}\right)\right]^{1 / 2}$, GOF $=\left[\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{p}}\right)\right]^{1 / 2}$. ${ }^{\mathrm{c}}$ The data recorded here for 7 is corresponding to structure $\mathbf{7 a}$ (Figure 3s). The data for structure $\mathbf{7 b}$ are not changed after final refinements.

II. Crystal structures of Cp-bonded compounds $\mathbf{1 , 4} 4$ and 7

Figure 1s. X-ray crystal structure of 1. Thermal ellipsoids are drawn at 50% probability level. H atoms at the Cp group are enhanced for clarity.

Figure 2s. X-ray crystal structures of $\mathbf{4}$ with two different hydrogen addition modes over the Cp ring corresponding to isomeric structures $\mathbf{4 a}$ (left) and $\mathbf{4 b}$ (right) shown in the text. Thermal ellipsoids are drawn at 50\% probability level.

Figure 3s. X-ray crystal structures of 7 with two different hydrogen addition modes over the Cp ring corresponding to isomeric structures $\mathbf{7 a}$ (left) and 7b (right). Thermal ellipsoids are drawn at 50\% probability level.
III. Variable temperature $\left(25-80{ }^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}$ NMR spectral studies of compound 4

Figure 4s. Exhibition of a series of ${ }^{1} \mathrm{H}$ NMR spectra of compound 4 recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at elevated temperatures.

Figure 5s. Exhibition of the enhanced resonances for the L ligand backbone γ - CH proton of compound 4 at $\delta 4.77-5.02 \mathrm{ppm}$ in Figure 4s.

IV. UV-vis spectra of compounds 1 and 2

Figure 6s. UV-vis spectra of compounds $\mathbf{1}$ (black, $\lambda_{\max }$ (peak), 320, 366 nm) and 2 (red, $\lambda_{\max }$ (peak), $287,344 \mathrm{~nm}$) recorded in toluene at room temperature $\left(1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

IV. DFT calculations

Computational details: All quantum-chemical calculations were carried out by using the Gaussian 09 program. ${ }^{1}$ Geometry optimization for compound $\mathrm{LGeR}(\mathrm{R}=\mathrm{Cp}, \mathrm{C} \equiv \mathrm{CH})$ was performed by using B3LYP/6-31+G(d) $)^{2-6}$ and that for $\mathrm{LGe}(\mathrm{Te}) \mathrm{R}(\mathrm{R}=\mathrm{Cp}, \mathrm{C} \equiv \mathrm{CH})$ was adopted on Stuttgart RSC 1997 ECP (to simplify the calculation, we use the H group instead of the Fc and Ph group). ${ }^{7}$ Vibrational frequencies were calculated to ensure the optimized structure. Charge analyses were performed by using the natural bond orbital (NBO) program. ${ }^{8}$ Computationally, it seems too difficult to directly calculate the enthalpies of reaction of LGeR with Te to form germanetellurone (eq (1)) because Te is
used as a solid powder. But, the bond disassociation energy (BDE) of $\mathrm{Ge}=\mathrm{Te}$ could be calculated on considering the Te atom (the standard enthalpy value, $47.1 \mathrm{kcal} / \mathrm{mol}$, has been experimentally determined ${ }^{9}$) according to eq (2) and (3).
$\mathrm{LGeR}+\mathrm{Te}(\mathrm{s}) \rightarrow \mathrm{LGe}(\mathrm{Te}) \mathrm{R}$
$\mathrm{LGeR}+\mathrm{Te}$ atom (triplet) $\rightarrow \mathrm{LGe}(\mathrm{Te}) \mathrm{R}$
$\mathrm{BDE}_{\mathrm{Ge}=\mathrm{Te}}=\Delta \mathrm{H}_{\mathrm{LGe}(\mathrm{Te}) \mathrm{R}}-\Delta \mathrm{H}_{\mathrm{LGeR}}-\Delta \mathrm{H}_{\text {Te atom }}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=\mathrm{BDE}_{\mathrm{Ge}=\mathrm{Te}}+\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ (Te atom)

LGeCp

$\mathrm{LGeC} \equiv \mathrm{CH}$

Figure 7s. HOMO orbital picture of LGeR

4a

4b

$\mathrm{Ar}=2,6-j \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Scheme 1s. Three possible isomeric structures of compound 4 (Relative energies ($\mathrm{kcal} / \mathrm{mol}$), -2.5 for isomer $\mathbf{4 a},-1.0$ for $\mathbf{4 b}$, and 0.0 for $\mathbf{4 c}$)

Table 3s. NBO analysis for $\mathrm{LGeR}\left(\mathrm{L}=\mathrm{HC}\left[\mathrm{C}(\mathrm{Me}) \mathrm{N}-2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2}\right.$

	Characteristics of lone pair of Ge						
R					Composition $(\%)$		
					d		
Cp					0.0		
$\mathrm{C} \equiv \mathrm{CH}$	+0.983	1.943	77.5	22.5	0.0		

Table 4s. NBO analysis of $\mathrm{LGe}(\mathrm{Te}) \mathrm{R}\left(\mathrm{L}=\mathrm{HC}\left[\mathrm{C}(\mathrm{Me}) \mathrm{N}-2,6-\mathrm{iPr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2}\right)$

R	NBO charge		HOMO-LUMO gap (eV)	Characteristics of the Ge-Te bond				
	Ge	Te		Occupation	Contributions(\%)	Composition (\%)		
						s	p	d
Cp	+1.385	-0.543	2.73	1.932	Ge: 51.2	44.3	55.3	0.4
					Te: 48.8	11.1	88.9	0.0
$\mathrm{C} \equiv \mathrm{CH}$	$+1.280$	-0.454	2.80	1.944	Ge: 54.7	51.4	48.3	0.3
					Te: 45.3	10.6	89.4	0.0

Table 5s. Calculated enthalpies for reactions of LGeR with Te to $\mathrm{LGe}(\mathrm{Te}) \mathrm{R}$

R	Bond disassociation energy $(\mathrm{Ge}=\mathrm{Te}, \mathrm{kcal} / \mathrm{mol})$	$\Delta \mathrm{H}_{\mathrm{rxn}}$ $(\mathrm{kcal} / \mathrm{mol})$
Cp	47.1	0.0
$\mathrm{C} \equiv \mathrm{CH}$	50.2	-3.1

References

1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford, CT 200 (2009).
2 S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys.,1980, 58, 1200.
3 A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
4 A. D. Becke, J. Chem. Phys.,1993,98, 5648.
5 C. T. Lee, W. T. Yang and R.G. Parr, Phys. Rev. B,1988, 37, 785.
6 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257.
7 M. Dolg, H. Stoll, H. Preuss and R. M. Pitzer, J. Phys. Chem., 1993, 97, 5852 and these basis sets and ECPs correspond to Revision: Fri Jun 271997 of the Stuttgart/Dresden groups.
8 A. E. Reed and F. Weinhold, J. Chem. Phys. 1983, 78, 4066.
9 Experimental value taken from http://www.wiredchemist.com/chemistry/data/enthalpies.

