<u>Electronic Supplementary Information</u>

Hydrogen and Halogen Bonding in a Concert Act of Anion Recognition: F⁻ Induced Atmospheric CO₂ Uptake by an Iodophenyl Functionalized Simple Urea Receptor

Romen Chutia and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati.

Assam-781039, India

E-mail: gdas@iitg.ernet.in

Contents.

 ¹H, ¹³C NMR and IR spectra of receptor L₂ ¹H and ¹³C NMR spectra of complex 1a Partial ¹³C NMR spectra comparison of complex 1a with TEAHCO₃ PXRD pattern and IR-spectra of complex 1a ¹H, ¹³C NMR, PXRD pattern and IR-spectra of complex 1b 	5-6 7 8 8-9 9-11 1-13 13 4-15
 ¹H and ¹³C NMR spectra of complex 1a Partial ¹³C NMR spectra comparison of complex 1a with TEAHCO₃ PXRD pattern and IR-spectra of complex 1a ¹H, ¹³C NMR, PXRD pattern and IR-spectra of complex 1b 	7 8 8-9 9-11 1-13 13 4-15
 4. Partial ¹³C NMR spectra comparison of complex 1a with TEAHCO₃ 5. PXRD pattern and IR-spectra of complex 1a 6. ¹H, ¹³C NMR, PXRD pattern and IR-spectra of complex 1b 	8 8-9 9-11 1-13 13 4-15
 5. PXRD pattern and IR-spectra of complex 1a 6. ¹H, ¹³C NMR, PXRD pattern and IR-spectra of complex 1b 	8-9 9-11 1-13 13 4-15
6. ¹ H, ¹³ C NMR, PXRD pattern and IR-spectra of complex 1b	9-11 1-13 13 4-15
	1-13 13 4-15
7. ¹ H, ¹³ C NMR, PXRD pattern and IR-spectra of complex 2a	13 4-15
8. Probable Mechanism for $SiF_{6^{2-}}$ recognition	4-15
9. ¹ H, ¹³ C NMR, PXRD pattern and IR-spectra of complex 2b	-6
10. Table for crystallographic parameters and refinement details	10
11. Table for details of hydrogen bonding contacts in the complexes	
1a-b and 2a-b	17
12. ¹ H NMR Stack Plot, Fit Plot and Job's Plot for receptor L_1 with TEAHCO ₃ 1	8-19
13. ¹ H NMR Stack Plot, Fit Plot and Job's Plot for receptor L_1 with n-TBAOAc 20	0-21
14. ¹ H NMR Stack Plot, Fit Plot and Job's Plot for receptor L_1 with n-TBAF 2.	2-24
15. ¹ H NMR Stack Plot for receptor L_1 with TEACl	24
16. ¹ H NMR Stack Plot for receptor L_1 with n-TBABr	25
17. ¹ H NMR Stack Plot for receptor L_1 with n-TBAI	25
18. ¹ H NMR Stack Plot for receptor L_1 with n-TBAHSO ₄	25
19. ¹ H NMR Stack Plot for receptor L_1 with n-TBAH ₂ PO ₄	26
20. ¹ H NMR Stack Plot for receptor L_1 with TEANO ₃	26
21. ¹ H NMR Stack Plot, Fit Plot and Job's Plot for receptor L_2 with n-TBAOAc 27	7-28
22. ¹ H NMR Stack Plot, Fit Plot and Job's Plot for receptor L_2 with TEAHCO ₃ 29	9-31
23. ¹ H NMR Stack Plot, Fit Plot and Job's Plot for receptor L_2 with n-TBAF 32	2-34
24. UV/Vis spectrum of L_1 and L_2 in MeCN upon addition different anions 35	5-36

Characterization of receptor L₁:

Figure S1: ¹H NMR spectrum of receptor L₁ in DMSO- d_6 (Varian-400 MHz) at 298 K, δ (ppm), 7.28 (d, 4H, ArH), 7.59 (d, 4H, ArH), 8.832 (s, 2H, -NH).

Figure S2: ¹³C NMR spectrum of receptor L₁ in DMSO- d_6 (Bruker-150 MHz) at 298 K. δ (ppm), 84.98 (2C, ArH), 120.67 (4C, ArH), 137.43 (4C, ArH), 139.49 (2C, ArH), 152.30 (1C, C=O).

Figure S3. FT-IR spectrum of receptor L₁ recorded in KBr pellet. υ cm⁻¹: 1005 (C-I), 1236 (C-N), 1549 (C=C), 1637 (-C=O), 3301 (N-H).

Figure S4. ESI-Mass spectrum of L_1 recorded in acetonitrile (MeCN) at 298 K showing m/z = 463.07 corresponds to $[M]^+$.

Figure S5: ¹H NMR spectrum of receptor L₂ in DMSO- d_6 (Bruker-600 MHz) at 298 K, δ (ppm), 7.417 (d, 4H, ArH), 7.435 (d, 4H, ArH), 8.870 (s, 2H, -NH).

Figure S6: ¹³C NMR spectrum of receptor L_2 in DMSO- d_6 (Bruker-150 MHz) at 298 K. δ (ppm), 113.609 (2C, ArH), 120.457 (4C, ArH), 131.675 (4C, ArH), 139.027 (2C, ArH), 152.434 (1C, C=O).

Figure S7. FT-IR spectrum of receptor L_2 recorded in KBr pellet. υ cm⁻¹: 1070 (C-Br), 1236 (C-N), 1555 (C=C), 1641 (-C=O), 3299 (N-H).

Figure S8. ESI-Mass spectrum of L_2 recorded in acetonitrile (MeCN) at 298 K showing m/z = 369.06 corresponds to $[M]^+$.

Figure S9: ¹H NMR spectrum of complex **1a** in DMSO- d_6 (Bruker-600 MHz) at 298 K, δ(ppm), 1.011 (t, 12H, n–TBA-CH₃), 1.28 (q, 8H, n–TBA-CH₂), 1.533 (q, 8H, n–TBA-CH2), 3.125 (t, 8H, n–TBA-N⁺CH₂), 7.57 (d, 4H, ArH), 7.520 (d, 4H, ArH), 10.67 (s, 2H, –NH).

Figure S10: ¹³C NMR spectrum of complex **1a** in DMSO- d_6 (Bruker-150 MHz) at 298 K. δ (ppm), 13.59 (4C, n–TBA-CH₃), 19.29 (4C, n–TBA-CH₂), 23.15 (4C, n–TBA-CH₂), 57.64

(4C, n–TBA-N⁺CH₂), 84.12 (2C, ArH), 120.15 (4C, ArH), 137.21 (4C, ArH), 140.46 (2C, ArH), 153.05 (1C, C=O), and 182.12 (1C, HCO_3^- anion).

Figure S11. Partial ¹³C NMR spectrum of complex **1a** (below) showing the huge downfield shift of the HCO_3^- resonance relative to the (TEA) HCO_3 salt (above).

Figure S12. Powder X-ray diffraction patterns of isolated crystals of **1a**: experimental is in green colour and simulated pattern is in red colour.

Figure S13. FT-IR spectrum of complex **1a** recorded in KBr pellet. υ cm⁻¹: 822 (HCO₃⁻¹), 1231 (C-N), 1537 (C=C), 1577(C-O), 1697 (-C=O), 2960 (C-H), 3420 (N-H), 3511(O-H).

Characterization of complex 1b:

Figure S14: ¹H NMR spectrum of complex **1b** in CDCl₃ (Varian-400 MHz) at 298 K, δ (ppm), 0.93 (t, 12H, n–TBA-CH₃), 1.294 (q, 8H, n–TBA-CH₂), 1.43 (t, 8H, n–TBA-CH2), 2.029 (s, Acetate–CH₃), 2.987 (t, 8H, n–TBA-N⁺CH₂), 7.485 (d, 4H, ArH), 7.53 (d, 4H, ArH), 11.67 (s, 2H, –NH).

Figure S15: ¹³C NMR spectrum of complex **1b** in DMSO- d_6 (Bruker-150 MHz) at 298 K, 13.57 (4C, n–TBA-CH₃), 19.27 (4C, n–TBA-CH₂), 23.12 (4C, n–TBA-CH₂), 24.73 (1C, Acetate–CH₃), 57.61 (4C, n–TBA-N⁺CH₂), 84.17 (2C, ArH), 120.59 (4C, ArH), 137.21 (4C, ArH), 140.43 (2C, ArH), 152.97 (1C, C=O) and 176.53 (Acetate–COO⁻).

Figure S16. Powder X-ray diffraction patterns of isolated crystals of **1b**: experimental is in green colour and simulated pattern is in red colour.

Figure S17. FT-IR spectrum of complex **1b** recorded in KBr pellet. v cm⁻¹: 642(-COO deformation), 823 (-COO), 1003(C-I), 1235 (C-N), 1553 (C=C), 1634 (-C=O), 2961 (C-H), 3301 (N-H).

Characterization of complex 2a:

Figure S18: ¹H NMR spectrum of complex **2a** in DMSO- d_6 (Bruker-600 MHz) at 298 K, δ (ppm), 0.922 (t, 12H, n–TBA-CH₃), 1.30 (s, 8H, n–TBA-CH₂), 1.55 (p, 8H, n–TBA-CH₂), 3.143 (s, 8H, n–TBA-N⁺CH₂), 7.374 (d, 4H, ArH), 7.52 (d, 4H, ArH), 11.043 (s, 2H, –NH).

Figure S19: ¹³C NMR spectrum of complex **2a** in DMSO- d_6 (Bruker-150 MHz) at 298 K. δ (ppm) 13.54 (4C, n–TBA-CH₃), 19.27 (4C, n–TBA-CH₂), 23.14 (4C, n–TBA-CH₂), 57.64 (4C, n–TBA-N⁺CH₂), 112.69 (2C, ArH), 120.14 (4C, ArH), 131.31 (4C, ArH), 140.44 (2C, ArH) and 153.41 (1C, C=O).

Figure S20. Powder X-ray diffraction patterns of isolated crystals of **2a**: experimental is in blue colour and simulated pattern is in red colour.

Figure S21. FT-IR spectrum of complex **2a** recorded in KBr pellet. υ cm⁻¹: 740(SiF₆²⁻), 1008(C-Br), 1227 (C-N), 1648 (-C=O), 2962 (C-H), 3422 (N-H).

Figure S22: ¹H NMR spectrum of complex **2b** in DMSO-*d*₆ (Bruker-600 MHz) at 298 K, δ (ppm), 0.91 (t, 12H, n–TBA-CH₃), 1.293 (q, 8H, n–TBA-CH₂), 1.541 (s, 8H, n–TBA-CH₂), 1.799 (s, Acetate–CH₃), 3.132 (s, 8H, n–TBA-N⁺CH₂), 7.384 (d, 4H, ArH), 7.547 (d, 4H, ArH), 11.39 (s, 2H, –NH).

Figure S23: ¹³C NMR spectrum of complex **2b** in DMSO- d_6 (Bruker-150 MHz) at 298 K. δ (ppm) 13.57 (4C, n–TBA-CH₃), 19.29 (4C, n–TBA-CH₂), 23.15 (4C, n–TBA-CH₂), 24.74 (1C, Acetate–CH₃), 57.65 (4C, n–TBA-N⁺CH₂), 112.49 (2C, ArH), 120.15 (4C, ArH), 131.31 (4C, ArH), 140.46 (2C, ArH), 153.44 (1C, C=O) and 176.53 (Acetate–COO[–]).

Figure S24. Powder X-ray diffraction patterns of isolated crystals of **2b**: experimental is in green colour and simulated pattern is in red colour.

Figure S25. FT-IR spectrum of complex **2b** recorded in KBr pellet. v cm⁻¹: 642(-COO deformation), 829 (-COO), 1070(C-Br), 1236 (C-N), 1564 (C=C), 1634 (-C=O), 2962 (C-H), 3305 (N-H).

Parameters	L	1a	ıb	L ₂	2b
CCDC	973820	973821	973822	973823	973825
Formula	$C_{13}H_{10}I_2N_2O$	$C_{30}H_{47}I_2N_3O_4$	$C_{31}H_{49}I_2N_3O_3$	$\begin{array}{c} C_{13}H_{10}Br_2N_2\\ O\end{array}$	$C_{31}H_{49}Br_2N_3O_3$
Fw	464.03	767.51	765.53	370.03	671.53
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	C 2	P 21/c	C2/c	P 21/c
a/Å	29.2420(9)	23.9471(7)	8.8809(3)	28.0636(16)	9.5024(5)
b/Å	4.6414(10)	8.3931(2)	21.0697(6)	4.6085(3)	18.9054(10)
c/Å	10.1031(3)	17.0344(5)	18.9452(6)	10.0857(6)	19.3877(13)
α/°	90.00	90.00	90.00	90.00	90.00
β/°	94.122(2)	96.4510(10)	97.815(2)	95.469(4)	99.771(5)
γ/°	90.00	90.00	90.00	90.00	90.00

Table S1. Crystallographic parameters and refinement details.

V/ų	1367.68(7)	3402.07(16)	3512.06(19)	1298.46(14)	3432.4(3)
Z	4	4	4	4	4
Dc/g cm ⁻³	2.254	1.498	1.448	1.893	1.299
μ Mo K α /mm ⁻	4.588	1.884	1.823	6.231	2.394
T/K	298(2)	298(2)	298(2)	298(2)	298(2)
θ max.	28.30	23.64	23.12	26.00	23.23
Total no.of reflections	9542	19895	43647	8968	15160
Independent reflections	1694	8369	8711	1596	8817
Observed reflections	1541	4435	4605	1040	5893
Parameters refined	83	384	358	83	426
$R_1, I > 2\sigma(I)$	0.0292	0.0421	0.0612	0.0377	0.0590
$wR_2, I > 2\sigma(I)$	0.0996	0.1107	0.1786	0.1119	0.1226
R_{1} , (all data)	0.0315	0.0604	0.1155	0.0697	0.1794
wR₂ (all data)	0.1052	0.1203	0.2080	0.1397	0.1652
GOF (<i>F</i> ²)	0.909	1.074	1.082	0.920	1.003

Table S2. Details of Hydrogen Bonding contacts in the Complexes 1a-b and 2a-b.

complex	D-H····A ^a	d(D···A)/Å	d(H···A)/Å	∠D–H•••A/°
1 a	N1-H-02	2.761(7)	1.921(5)	165.2(4)
	N2-H-03	2.909(6)	2.104(4)	155.4(3)
	C6-H-O2	3.292(7)	2.571(4)	134.6(4)
	С13-Н…О3	3.382(6)	2.644(4)	136.8(4)
ıb	N1-H···O3	2.835(6)	1.985(4)	169.3(3)
	N2-H····O2	2.833(5)	1.974(4)	175.8(3)
	С3-Н-О3	3.384(8)	2.648(5)	136.4(4)
	С9-Н…О2	3.449(7)	2.723(4)	135.4(4)
2b	N1-HO3	3.454(5)	2.728(4)	142.8(3)
	N2-H-03	2.809 (5)	1.976(4)	162.5(3)
	N1-H····O2	2.778(5)	1.962(3)	157.8(3)
	C3-HO2	3.315(7)	2.661(4)	128.0(3)

^a D= Donor, A=Aceptor

Figure S26. Ball-and-stick representation depicting the H-bonding contacts of complex **2a** (CCDC no. 973824) on SiF_6^{2-} (*n*-TBA cations are omitted for clarity of the presentation).

Figure S27. Expanded partial ¹H NMR spectra of L_1 upon titration with HCO₃⁻(TEA) in DMSO- d_6 .

Figure S28. Fit plot obtained in the determination of K_a using urea-NH resonance by WinEQNMR₂ for L₁ and bicarbonate anion.

out

```
Calculations for the titration of L<sub>1</sub> with the bicarbonate anion.
```

```
Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes
Program run at 16:21:30 on 01/08/2014
 1:1 and 1:2 complex
  Equilibrium constants are log10 values
         PARAMETER
                      DELTA
                                ERROR
                                         CONDITION
NO.
    А
                                                     DESCRIPTION
   1
     1
         5.15685E+00 3.200E-02 7.732E-01 1.962E+02 K11
   2
       9.06291E+00 3.600E-02 1.194E+00 1.245E+02 K12
     1
         8.81662E+00 1.000E-02 3.401E-02 2.376E+00 Free Ligand
   3
     1
   4
     1 1.04618E+01 1.000E-02 9.592E-02 3.082E+01 complex11
     1 1.10428E+01 1.000E-02 3.004E-02 5.233E+00 complex12
   5
<code>ORMS ERROR = 2.58E-02 MAX ERROR = 4.98E-02 AT OBS.NO. 2 RESIDUALS SQUARED = 4.67E-03</code>
 RFACTOR =
              0.1898 PERCENT
 NO. A EXPT. DEL CALC. DEL
                                  RESIDUAL
                                               % DEV WEIGHT
                                                                   HC03-
            рΗ
L1
  1 1 9.1320E+00 9.0992E+00 3.2840E-02 3.5961E-01 1.0000E+00 1.6667E-03
9.6154E-03 0.0000E+00
   2 1 9.4100E+00 9.4598E+00 -4.9824E-02 -5.2948E-01 1.0000E+00
                                                                   3.7037E-03
9.2593E-03 0.0000E+00
   3 1 9.7730E+00 9.7635E+00 9.5291E-03 9.7504E-02 1.0000E+00
                                                                    5.3571E-03
8.9286E-03 0.0000E+00
   4 1 1.0039E+01 1.0043E+01 -4.2152E-03 -4.1989E-02 1.0000E+00
                                                                    6.8966E-03
8.6207E-03 0.0000E+00
   5 1 1.0288E+01 1.0286E+01 1.9436E-03 1.8892E-02 1.0000E+00
                                                                   8.3333E-03
8.3333E-03 0.0000E+00
   6 1 1.0487E+01 1.0485E+01 2.2364E-03 2.1325E-02 1.0000E+00
                                                                    9.6774E-03
8.0645E-03 0.0000E+00
       1.0647E+01 1.0646E+01 1.4744E-03 1.3848E-02 1.0000E+00 1.0937E-02
7.8125E-03 0.0000E+00
   8 1 1.0794E+01 1.0781E+01 1.2708E-02 1.1773E-01 1.0000E+00 1.2121E-02
7.5758E-03 0.0000E+00
9 1 1.0913E+01 1.0893E+01 2.0475E-02 1.8762E-01 1.0000E+00 1.3235E-02
7.3529E-03 0.0000E+00
  10 1 1.0965E+01 1.0971E+01 -5.5246E-03 -5.0384E-02 1.0000E+00 1.4286E-02
7.1429E-03 0.0000E+00
  11 1 1.1001E+01 1.1020E+01 -1.9384E-02 -1.7621E-01 1.0000E+00 1.6216E-02
6.7568E-03 0.0000E+00
  12 1 1.1035E+01 1.1034E+01 7.3433E-04 6.6545E-03 1.0000E+00 1.9512E-02
6.0976E-03 0.0000E+00
 TOLERANCE ON SUM OF SQUARES
TOLERANCE ON EIGEN VALUES
                                0.0100
                              0.0001
 CONVERGANCE AFTER 38 ITERATIONS
```


Figure S29. Job plot using urea-NH resonances for L_1 and bicarbonate anion, showing a maximum at 0.4 mole fraction value of the receptor for the multiple equilibria existing between 1: 1 and 1 : 2 complexes.

Figure S30. Expanded partial ¹H NMR spectra of L_1 upon titration with AcO⁻(n-TBA) in DMSO- d_6 .


```
Calculations for the titration of L<sub>1</sub> with the acetate anion.
```

```
out
Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes
Program run at 16:49:45
                        on 01/08/2014
1:1 and 1:2 complex
 Equilibrium constants are log10 values
NO.
    Δ
        PARAMETER
                    DELTA
                              FRROR
                                       CONDITION
                                                  DESCRIPTION
        3.69465E+00 3.200E-02 2.886E-01 9.752E+02 K11
  1 1
  2
     1
        6.33635E+00 3.600E-02 5.488E-01 4.350E+02 K12
        8.80631E+00 1.000E-02 3.919E-02 9.090E+00 Free Ligand
  3
     1
        1.17029E+01 1.000E-02 1.717E-01 3.103E+02 complex11
  4
     1
     1 1.15518E+01 1.000E-02 6.628E-02 2.386E+01 complex12
  5
0RMS ERROR = 1.58E-02 MAX ERROR = 2.88E-02 AT OBS.NO. 4
RESIDUALS SQUARED = 1.49E-03
              0.1065 PERCENT
RFACTOR =
NO. A
       EXPT. DEL CALC. DEL
                                RESIDUAL
                                             % DEV
                                                    WEIGHT
                                                                AcO-
                                                                               L1
        рН
  1 1 9.3600E+00 9.3595E+00 5.3883E-04 5.7567E-03 1.0000E+00 1.9231E-03
9.6154E-03 0.0000E+00
  2 1 9.8800E+00 9.8757E+00 4.2715E-03 4.3234E-02 1.0000E+00 3.7037E-03
9.2593E-03 0.0000E+00
  3 1 1.0320E+01 1.0339E+01 -1.8932E-02 -1.8345E-01 1.0000E+00
                                                                 5.3571E-03
8.9286E-03 0.0000E+00
  4 1 1.0759E+01 1.0730E+01 2.8756E-02 2.6728E-01 1.0000E+00 6.8966E-03
8.6207E-03 0.0000E+00
  5 1 1.1019E+01 1.1034E+01 -1.5468E-02 -1.4037E-01 1.0000E+00
                                                                 8.3333E-03
8.3333E-03 0.0000E+00
  6 1 1.1249E+01 1.1249E+01 -1.8978E-04 -1.6871E-03 1.0000E+00 9.6774E-03
8.0645E-03 0.0000E+00
  7 1 1.1392E+01 1.1390E+01 2.4824E-03 2.1791E-02 1.0000E+00 1.0937E-02
7.8125E-03 0.0000E+00
  8 1 1.1470E+01 1.1472E+01 -2.3661E-03 -2.0628E-02 1.0000E+00 1.2121E-02
7.5758E-03 0.0000E+00
  9 1 1.1520E+01 1.1519E+01 6.9904E-04 6.0681E-03 1.0000E+00 1.3235E-02
7.3529E-03 0.0000E+00
 10 1 1.1550E+01 1.1545E+01 5.1756E-03 4.4810E-02 1.0000E+00 1.4286E-02
7.1429E-03 0.0000E+00
 11 1 1.1562E+01 1.1565E+01 -3.2415E-03 -2.8036E-02 1.0000E+00 1.6216E-02
6.7568E-03 0.0000E+00
TOLERANCE ON SUM OF SQUARES
                              0.0100
TOLERANCE ON EIGEN VALUES
                            0.0001
CONVERGANCE AFTER
                   22 ITERATIONS
```


Figure S32. Job plot using urea-NH resonances for L_1 and acetate anion, showing a maximum at 0.45 mole fraction value of the receptor for the multiple equilibria existing between 1: 1 and 1 : 2 complexes.

Figure S33. Expanded partial ¹H NMR spectra of L_1 upon titration with F-(n-TBA) in DMSO- d_6 .

Figure S₃₄. Fit plot obtained in the determination of K_a using urea-NH resonance by WinEQNMR₂ for L₁ and fluoride anion.

Calculations for the titration of L₁ with the fluoride anion.

```
out
Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes
Program run at 18:23:40
                        on 01/08/2014
1:1 and 1:2 complex
 Equilibrium constants are log10 values
NO.
        PARAMETER
                     DELTA
                               ERROR
                                       CONDITION
                                                  DESCRIPTION
    Α
  1
    1
        4.95144E+00 3.200E-02 2.394E+00 3.708E+02 K11
  2
     1
        8.37534E+00 3.600E-02 4.120E+00 4.244E+02 K12
  3
     1
        8.79251E+00 1.000E-02 7.171E-02 2.734E+00 Free Ligand
  4
     1
        1.03681E+01 1.000E-02 1.756E-01 3.463E+01 complex11
  5
     1 1.08952E+01 1.000E-02 2.520E-01 6.255E+01 complex12
0RMS ERROR = 4.91E-02 MAX ERROR = 6.90E-02 AT OBS.NO. 3
RESIDUALS SQUARED = 1.45E-02
RFACTOR =
              0.3544 PERCENT
                                RESIDUAL
NO. A
       EXPT. DEL CALC. DEL
                                             % DEV
                                                     WEIGHT
                                                                 F -
                                                                             L1
    pН
  1 1 9.1630E+00 9.1053E+00 5.7686E-02 6.2955E-01 1.0000E+00
                                                                 1.9231E-03
9.6154E-03 0.0000E+00
  2 1 9.3910E+00 9.4135E+00 -2.2460E-02 -2.3916E-01 1.0000E+00
                                                                3.7037E-03
9.2593E-03 0.0000E+00
  3 1 9.6430E+00 9.7120E+00 -6.8969E-02 -7.1522E-01
                                                     1.0000E+00
                                                                 5.3571E-03
8.9286E-03 0.0000E+00
  4 1 9.9600E+00 9.9897E+00 -2.9698E-02 -2.9818E-01 1.0000E+00
                                                                 6.8966E-03
8.6207E-03 0.0000E+00
  5 1 1.0241E+01 1.0225E+01 1.6071E-02 1.5693E-01 1.0000E+00
                                                                 8.3333E-03
8.3333E-03 0.0000E+00
  6 1 1.0420E+01 1.0402E+01 1.8230E-02 1.7496E-01 1.0000E+00
                                                                 9.6774E-03
8.0645E-03 0.0000E+00
  7 1 1.0564E+01 1.0536E+01 2.8188E-02 2.6683E-01 1.0000E+00
                                                                1.0937E-02
7.8125E-03 0.0000E+00
  8 1 1.0685E+01 1.0642E+01 4.3401E-02 4.0618E-01 1.0000E+00
                                                                1.2121E-02
7.5758E-03 0.0000E+00
  9 1 1.0734E+01 1.0726E+01 8.1882E-03 7.6283E-02 1.0000E+00 1.3235E-02
7.3529E-03 0.0000E+00
 10 1 1.0777E+01 1.0786E+01 -8.7833E-03 -8.1501E-02 1.0000E+00 1.4286E-02
7.1429E-03 0.0000E+00
 11 1 1.0803E+01 1.0843E+01 -3.9724E-02 -3.6772E-01 1.0000E+00 1.6216E-02
6.7568E-03 0.0000E+00
TOLERANCE ON SUM OF SOUARES
                              0.0100
TOLERANCE ON EIGEN VALUES
                            0.0001
CONVERGANCE AFTER 12 ITERATIONS
```


Figure S35. Job plot using urea-NH resonances for L_1 and fluoride anion, showing a maximum at 0.43 mole fraction value of the receptor for the multiple equilibria existing between 1: 1 and 1 : 2 complexes.

Figure S36. Expanded partial ¹H NMR spectra of L_1 upon titration with Cl⁻(TEA) in DMSO- d_6 .

Figure S₃₇. Expanded partial ¹H NMR spectra of L_1 upon titration with Br⁻(n-TBA) in DMSO- d_6 .

Figure S38. Expanded partial ¹H NMR spectra of L_1 upon titration with I⁻(n-TBA) in DMSO- d_6 .

Figure S39. Expanded partial ¹H NMR spectra of L_1 upon titration with HSO₄⁻(n-TBA) in DMSO- d_6 .

Figure S40. Expanded partial ¹H NMR spectra of L_1 upon titration with $H_2PO_4^{-}(n-TBA)$ in DMSO- d_6

Figure S41. Expanded partial ¹H NMR spectra of L_1 upon titration with NO₃⁻(TEA) in DMSO- d_6 .

Figure S42. Expanded partial ¹H NMR spectra of L_2 upon titration with AcO⁻(n-TBA) in DMSO- d_6 .

Figure S43. Fit plot obtained in the determination of K_a using urea-NH resonance by WinEQNMR₂ for L₂ and acetate anion.

Calculations for the titration of L₂ with the acetate anion.

out Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes Program run at 17:11:38 on 01/08/2014 1:1 and 1:2 complex Equilibrium constants are log10 values NO. Α PARAMETER DELTA ERROR CONDITION DESCRIPTION 3.66075E+00 3.200E-02 2.202E-01 1.322E+03 K11 1 1 2 1 6.53355E+00 3.600E-02 3.391E-01 4.054E+02 K12 1 8.82052E+00 1.000E-02 2.464E-02 1.627E+01 Free Ligand 3 1.10966E+01 1.000E-02 1.299E-01 5.727E+02 complex11 4 1 1 1.12669E+01 1.000E-02 3.217E-02 3.256E+01 complex12 5 0RMS ERROR = 7.62E-03 MAX ERROR = 1.16E-02 AT OBS.NO. 2 RESIDUALS SQUARED = 3.48E-04 0.0533 PERCENT RFACTOR = NO. A EXPT. DEL CALC. DEL RESIDUAL % DEV WEIGHT AcOрΗ 1 1 9.2540E+00 9.2499E+00 4.1151E-03 4.4468E-02 1.0000E+00 1.9231E-03 9.6154E-03 0.0000E+00 2 1 9.6320E+00 9.6436E+00 -1.1618E-02 -1.2062E-01 1.0000E+00 3.7037E-03 9.2593E-03 0.0000E+00 3 1 1.0000E+01 9.9954E+00 4.6263E-03 4.6263E-02 1.0000E+00 5.3571E-03 8.9286E-03 0.0000E+00 4 1 1.0310E+01 1.0300E+01 1.0186E-02 9.8799E-02 1.0000E+00 6.8966E-03 8.6207E-03 0.0000E+00 5 1 1.0549E+01 1.0553E+01 -4.4279E-03 -4.1975E-02 1.0000E+00 8.3333E-03 8.3333E-03 0.0000E+00 6 1 1.0753E+01 1.0756E+01 -2.7552E-03 -2.5622E-02 1.0000E+00 9.6774E-03 8.0645E-03 0.0000E+00 7 1 1.0905E+01 1.0910E+01 -4.5233E-03 -4.1479E-02 1.0000E+00 1.0937E-02 7.8125E-03 0.0000E+00 8 1 1.1027E+01 1.1023E+01 4.4870E-03 4.0691E-02 1.0000E+00 1.2121E-02 7.5758E-03 0.0000E+00 9 1 1.1098E+01 1.1099E+01 -5.9128E-04 -5.3278E-03 1.0000E+00 1.3235E-02 7.3529E-03 0.0000E+00 10 1 1.1150E+01 1.1148E+01 1.5745E-03 1.4121E-02 1.0000E+00 1.4286E-02 7.1429E-03 0.0000E+00 11 1 1.1200E+01 1.1201E+01 -8.4114E-04 -7.5102E-03 1.0000E+00 1.6216E-02 6.7568E-03 0.0000E+00 TOLERANCE ON SUM OF SQUARES 0.0100

Ľ

Figure S44. Job plot using urea-NH resonances for L_2 and acetate anion, showing a maximum at 0.45 mole fraction value of the receptor for the multiple equilibria existing between 1: 1 and 1 : 2 complexes.

Figure S45. Expanded partial ¹H NMR spectra of L_2 upon titration with HCO₃⁻(TEA) in DMSO- d_6 .

Figure S46. Fit plot obtained in the determination of K_a using urea-NH resonance by WinEQNMR₂ for L₂ and bicarbonate anion.

Calculations for the titration of L₂ with the bicarbonate anion.

out Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes Program run at 18:30:16 on 01/08/2014 1:1 and 1:2 complex Equilibrium constants are log10 values NO. А PARAMETER DELTA ERROR CONDITION DESCRIPTION 3.31956E+00 3.200E-02 1.596E+00 7.560E+03 K11 1 6.78632E+00 3.600E-02 1.339E+00 7.126E+02 K12 2 1 3 8.83889E+00 1.000E-02 9.227E-02 1.098E+02 Free Ligand 1 4 1 1.00942E+01 1.000E-02 1.259E+00 6.274E+03 complex11 1 1.01112E+01 1.000E-02 8.686E-02 1.405E+02 complex12 5 0RMS ERROR = 1.26E-02 MAX ERROR = 1.83E-02 AT OBS.NO. 8 RESIDUALS SQUARED = 9.47E-04 RFACTOR = 0.0958 PERCENT NO. A EXPT. DEL CALC. DEL RESIDUAL % DEV WEIGHT HC03-L2 рΗ 1 1 9.0440E+00 9.0429E+00 1.1396E-03 1.2601E-02 1.0000E+00 1.9231E-03 9.6154E-03 0.0000E+00 2 1 9.2090E+00 9.2125E+00 -3.4571E-03 -3.7540E-02 1.0000E+00 3.7037E-03 9.2593E-03 0.0000E+00 3 1 9.3590E+00 9.3641E+00 -5.0631E-03 -5.4098E-02 1.0000E+00 5.3571E-03 8.9286E-03 0.0000E+00 4 1 9.5110E+00 9.5023E+00 8.7280E-03 9.1768E-02 1.0000E+00 6.8966E-03 8.6207E-03 0.0000E+00 5 1 9.6320E+00 9.6288E+00 3.2377E-03 3.3614E-02 1.0000E+00 8.3333E-03 8.3333E-03 0.0000E+00 6 1 9.7540E+00 9.7437E+00 1.0272E-02 1.0531E-01 1.0000E+00 9.6774E-03 8.0645E-03 0.0000E+00 7 1 9.8350E+00 9.8463E+00 -1.1306E-02 -1.1495E-01 1.0000E+00 1.0937E-02 7.8125E-03 0.0000E+00 8 1 9.9160E+00 9.9343E+00 -1.8341E-02 -1.8496E-01 1.0000E+00 1.2121E-02 7.5758E-03 0.0000E+00 9 1 1.0021E+01 1.0006E+01 1.4876E-02 1.4845E-01 1.0000E+00 1.3235E-02 7.3529E-03 0.0000E+00 10 1 1.0059E+01 1.0054E+01 4.5424E-03 4.5157E-02 1.0000E+00 1.4286E-02 7.1429E-03 0.0000E+00 11 1 1.0092E+01 1.0095E+01 -3.1137E-03 -3.0854E-02 1.0000E+00 1.6216E-02 6.7568E-03 0.0000E+00

TOLERANCE ON SUM OF SQUARES 0.0100 TOLERANCE ON EIGEN VALUES 0.0001 CONVERGANCE AFTER 16 ITERATIONS

Figure S₄₇. Job plot using urea-NH resonances for L_2 and bicarbonate anion, showing a maximum at 0.4 mole fraction value of the receptor for the multiple equilibria

existing between 1: 1 and 1 : 2 complexes.

Figure S48. Expanded partial ¹H NMR spectra of L_2 upon titration with F-(n-TBA) in DMSO- d_6 .

Figure S49. Fit plot obtained in the determination of K_a using urea-NH resonance by WinEQNMR₂ for L₂ and fluoride anion.

Calculations for the titration of L₂ with the fluoride anion.

out Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes Program run at 18:38:25 on 01/08/2014 1:1 and 1:2 complex Equilibrium constants are log10 values NO. Α PARAMETER DELTA ERROR CONDITION DESCRIPTION 4.39668E+00 3.200E-02 1.177E+00 2.276E+04 K11 1 1 8.24536E+00 3.600E-02 2.073E+00 1.599E+04 K12 2 1 1 8.80584E+00 1.000E-02 4.867E-02 2.747E+01 Free Ligand 3 1 1.12942E+01 1.000E-02 3.078E-01 9.149E+02 complex11 4 1 1.12707E+01 1.000E-02 1.622E-02 5.927E+00 complex12 5 0RMS ERROR = 1.17E-02 MAX ERROR = 1.62E-02 AT OBS.NO. 7 RESIDUALS SQUARED = 8.16E-04 0.0809 PERCENT RFACTOR = NO. A EXPT. DEL CALC. DEL RESIDUAL % DEV WEIGHT F pH 1 9.2840E+00 9.2734E+00 1.0628E-02 1.1447E-01 1.0000E+00 1.9231E-03 9.6154E-03 0.0000E+00 2 1 9.6840E+00 9.6879E+00 -3.8710E-03 -3.9973E-02 1.0000E+00 3.7037E-03 9.2593E-03 0.0000E+00 3 1 1.0044E+01 1.0052E+01 -7.8545E-03 -7.8201E-02 1.0000E+00 5.3571E-03 8.9286E-03 0.0000E+00 4 1 1.0354E+01 1.0367E+01 -1.3257E-02 -1.2804E-01 1.0000E+00 6.8966E-03 8.6207E-03 0.0000E+00 5 1 1.0634E+01 1.0635E+01 -9.0122E-04 -8.4749E-03 1.0000E+00 8.3333E-03 8.3333E-03 0.0000E+00 6 1 1.0864E+01 1.0855E+01 8.8148E-03 8.1138E-02 1.0000E+00 9.6774E-03 8.0645E-03 0.0000E+00 7 1 1.1044E+01 1.1028E+01 1.6241E-02 1.4706E-01 1.0000E+00 1.0937E-02 7.8125E-03 0.0000E+00 8 1 1.1154E+01 1.1152E+01 1.9102E-03 1.7126E-02 1.0000E+00 1.2121E-02 7.5758E-03 0.0000E+00 9 1 1.1224E+01 1.1230E+01 -5.8193E-03 -5.1847E-02 1.0000E+00 1.3235E-02 7.3529E-03 0.0000E+00 10 1 1.1254E+01 1.1262E+01 -7.9689E-03 -7.0810E-02 1.0000E+00 1.4286E-02 7.1429E-03 0.0000E+00 11 1 1.1274E+01 1.1271E+01 2.6150E-03 2.3195E-02 1.0000E+00 1.6216E-02 6.7568E-03 0.0000E+00

L2

TOLERANCE ON SUM OF SQUARES 0.0100 TOLERANCE ON EIGEN VALUES 0.0001 CONVERGANCE AFTER 39 ITERATIONS

Figure S50. Job plot using urea-NH resonances for L_2 and fluoride anion, showing a maximum at 0.43 mole fraction value of the receptor for the multiple equilibria existing between 1: 1 and 1 : 2 complexes.

Figure S51. Changes in the UV/Vis spectrum of L_1 in MeCN upon addition of *n*-TBA salts of anions (20 equiv.)

Figure S52. Changes in the UV/Vis spectrum of L_2 in MeCN upon addition of *n*-TBA salts of anions (20 equiv.)

References

1. Hynes, M.J., EQNMR: A computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data, *J. Chem. Soc., Dalton Trans.* **1993** 311-312.