Electronic Supporting Information (ESI)

Synthesis and Structures of *Tris*(2-pyridyl)aluminate Sandwich Compounds [{RAI(2-py´)₂}₂M] (py´ = 2-pyridyl, M= Ca, Mn, Fe)

Raúl García-Rodríguez* Thomas H. Bullock, Mary McPartlin and Dominic S. Wright*

Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW (U.K.).

Representative NMR spectra for selected compounds

NMR spectra for [EtAl(6-Me-2-py)₃Li•THF] (4b);

Figure S1. ¹H NMR (298 K, d₈-THF, 500 MHz) spectrum of [*EtAl(6-Me-2-py)*₃*Li*•*THF*] (*4b*).

Note: A line broadening (lb) of 0.3Hz was using in the processing of the spectrum.

Figure S2.¹³C{¹H} NMR (298 K, d₈-THF, 100.6 MHz), spectrum of [*EtAl*(6-Me-2-py)₃Li•THF] (4b).

Figure S3. ¹H-¹H COSY (298 K, d₈-THF, 500 MHz) spectrum of [*EtAl(6-Me-2-py)*₃Li•THF] (4b).

Figure S4. ¹H-¹³C HMQC (298 K, d₈-THF, 500 MHz) (left) and ¹H-¹³C HMBC (298 K, d₈-THF, 500 MHz) (right) spectra of [*EtAl(6-Me-2-py)*₃*Li*•*THF*] (*4b*).

Figure S5. ²⁷Al NMR (298 K, d₈-THF, 130.3 MHz, ref solution of AlCl₃.6H₂O/D₂O) (left) and ⁷Li NMR (298 K, d₈-THF, 194.4 MHz, ref solution of LiCl/D₂O) (right) spectra of *[EtAl(6-Me-2-py)₃Li•THF]* (4b).

Note: The broad signal at around 65ppm in the ²⁷Al NMR spectrum arises from probe background.

Figure S6. ¹H-¹H NOESY (298 K, d_8 -THF, 500 MHz, mixing time of 600 ms) spectrum of of [*EtAl(6-Me-2-py)*₃*Li*•*THF*] (*4b*). Crosspeaks observed between the C(3)–H py proton and the protons of Al-CH₂CH₅ arise from intramolecular cross-relaxation of protons that are close to each other in space, confirming the presence of an Et–Al-Py linkage.

Figure S7. ¹H NMR (298 K, d₈-THF, 500 MHz) spectrum of [{*EtAl*(6-*Me*-2-*py*)₃}₂*Ca*] (11).

Note: A line broadening (lb) of 0.3Hz was using in the processing of the spectrum.

Figure S8. ¹³C{¹H} NMR (298 K, d₈-THF, 125.8 MHz), spectrum of [$\{EtAl(6-Me-2-py)_3\}_2Ca$] (11). Observation of signals at 188.15 (br, C(2)) and 0.28 (br, Al–CH2) was challenging due to its broadening and the poor noise/signal ratio but they were also observed through ¹H-¹³C HMBC and ¹H-¹³C HMQC experiments (see below for selected regions of the spectra and fig S10 for full spectra) Note: A line broadening (lb) of 15Hz was using in the processing of the ¹³C {¹H} NMR spectrum.

Figure S9. ¹H-¹H COSY (298 K, d₈-THF, 500 MHz) spectrum of [{*EtAl(6-Me-2-py)3*}2*Ca*] (11).

Figure S10. ¹H-¹³C HMQC (298 K, d₈-THF, 500 MHz) left and ¹H-¹³C HMBC (298 K, d₈-THF, 500 MHz) right spectra of *[{EtAl(6-Me-2-py)₃}2Ca] (11)*.

Figure S11. ²⁷Al NMR (298 K, d₈-THF, 130.3 MHz, ref solution of AlCl₃.6H₂O/D₂O) spectrum of [{EtAl(6-Me-2-py)3}2Ca] (11).

Note: The broad signal at around 65ppm in the ²⁷Al NMR spectrum arises from probe background.

Figure S12. ¹H-¹H NOESY (298 K, d_8 -THF, 500 MHz, mixing time of 600 ms) spectrum of [{*EtAl(6-Me-2-py)3*}2*Ca*] (11). Crosspeaks observed between the C(3)–H py proton and the protons of Al-CH₂CH₅ arise from intramolecular cross-relaxation of protons that are close to each other in space, confirming the presence of an Et–Al-Py linkage.

Figure S13. Stacked ¹H NMR spectra (298 K, d_8 -THF, 500 MHz) comparing the differences in chemical shift between [*EtAl(6-Me-2-py)*₃]₂*Ca*] (11).

Note: A line broadening (lb) of 0.3Hz was using in the processing of the spectra.

Figure S14. Stacked ¹H NMR spectra (298 K, d₈-THF, 500 MHz) comparing the ¹H NMR spectra of $[EtAl(6-Me-2-py)_3Li \cdot THF](4b)$ and $[{EtAl(6-Me-2-py)_3}Mn(\mu-Cl)Li{(6-Me-2-py)_3}AlEt}]$ (12).

Note: A line broadening (lb) of 0.3Hz was using in the processing of the spectra

X-ray data for 12 (R3-polymorph)

Crystal data: **12** (*R*3): C₄₀H₄₆Al₂ClLiMnN₆, M = 762.12, *triclinic*, space group *R*3, *Z* = 3, *a* = 12.543(1), *b* = 12.543(1), *c* = 22.339(2)Å, V = 3043.7(4) Å³, μ (Cu–K α) = 3.938 mm⁻¹, λ = 1.54184 nm, *T* = 250(2) K, ρ_{calc} = 1.247 Mg m⁻³, *T* = 180(2) K. Total reflections 2280, unique 881 (*R*_{int} = 0.031). *R*1 = 0.096 [*I*>2 σ (*I*)] and *wR*2 = 0.2389. The Mn(1)-Cl(1)-Li(1) fragment (occupancy 0.29000) and the Li(2)-Cl(2)-Mn(2) fragment (occupancy 0.04333) were restrained to have the same geometry, all Mn, Cl and Li atoms were assigned a common isotropic displacement parameter. The result seems reasonable (Mn-Cl distances 2.35A, Li-Cl distances 2.80A, U(iso)=0.07), consistent with that observed for the low-temperature trigonal form. The terminal Et groups M-C(1)-C(2) are not well resolved, each was modelled with three distance restraints d1=M-C(1),d2= M-C(2), d3=C(1)-C(2) where d1, d2 and d3 were estimated from the better-resolved refinement of the low temperature trigonal

form. Despite this refinement strategy, the parameter-data ratio is still poor (5:1), reflecting the very poor quality of this dataset (the best of three datasets from three different crystals).