Electronic Supplemental Information for:

Ligand-based Photooxidations of Dithiomaltolato Complexes of Ru(II) and Zn(II): Photolytic CH Activation and Evidence of Singlet Oxygen Generation and Quenching

Britain Bruner^a, Malin Backlund Walker^b, Mukunda M. Ghimire^c, Dong Zhang^c, Matthias Selke^c, Kevin Klausmeyer^a, Mohammad A. Omary^c, and Patrick J. Farmer^{*a,b}

¹Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706

²Department of Chemistry, University of California, Irvine, Irvine CA 92697-2025

³Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA 90032

⁴Department of Chemistry, University of North Texas, Denton, Texas 76203

Contents:

SM1. Crystallographic Data for Httma
SM2. Comparison of crystallographic data for ttma moiety
SM3. Photolytic dissociation of compound 1 at room temperature
SM4. ¹H NMR comparison of compounds 1, 3 and 4.
SM5. MS analysis of soluble products obtained after photo-oxidations of 4.
SM6. Steady State Quenching Experiments using compounds 1 and 4.
SM7. Singlet oxygen quenching by compound 1.

SM1. Crystallographic Data for Httma

Table S1. Structural data for Httma, numbered as indicated in figure below, with two molecules re

 within the unit cell.

Bond	(Å)
S(1)-C(1)	1.6900(16)
S(2)-C(4)	1.6903(19)
S(2)-C(3)	1.7110(17)
O(1)-C(2)	1.3544(19)
C(1)-C(5)	1.421(2)
C(1)-C(2)	1.439(2)
C(2)-C(3)	1.372(2)
C(4)-C(5)	1.360(2)
C(3)-C(6)	1.499(2)

S(3)-C(7)	1.6901(16)
S(4)-C(10)	1.6892(18)
S(4)-C(9)	1.7094(17)
O(2)-C(8)	1.3550(19)
C(7)-C(11)	1.422(2)
C(7)-C(8)	1.441(2)
C(8)-C(9)	1.371(2)
C(10)- C(11)	1.356(2)
C(9)-C(12)	1.505(2)

SM2.Comparison of crystallographic data for ttma moiety

Scheme S2. ttma numbering

Table S2A. Comparison of ttma bond lengths

Bond	Httma		4		1
S(1)-C(1)	1.6900(16)	1.6901(16)	1.732(3)	1.720(3)	1.70832
S(2)-C(4)	1.6903(19)	1.6892(18)	1.679(3)	1.679(3)	1.68526
S(2)-C(3)	1.7110(17)	1.7094(17)	1.686(3)	1.695(3)	1.69077
O(1)-C(2)	1.3544(19)	1.3550(19)	1.309(3)	1.301(3)	1.29534
C(1)-C(5)	1.421(2)	1.422(2)	1.410(4)	1.411(4)	1.42183
C(1)-C(2)	1.439(2)	1.441(2)	1.440(4)	1.452(4)	1.44574
C(2)-C(3)	1.372(2)	1.371(2)	1.409(4)	1.398(4)	1.40207
C(3)-C(6)	1.499(2)	1.505(2)	1.503(4)	1.500(4)	1.51495
C(4)-C(5)	1.360(2)	1.356(2)	1.374(4)	1.360(5)	1.33729

Table S2B. Statistical comparison of ring C-C bond lengths in ttma moieties.

	Httma	1	4
Total Values	8	4	8
Mean	1.39775	1.40173	1.40675
Standard deviation	0.03635	0.04652	0.03052
Variance	0.00132	0.00216	0.00093

Mean (M) = sum of X values / n (number of values); standard deviation (SD)= $(\Sigma(X-M)^2/n-1)^{1/2}$; variance = (SD)²

SM3. Photolytic dissociation of compound 1 at room temperature

Photolysis of $[Ru(bpy)_2(ttma)]^+$ in H₂O. Photolysis of $[Ru(bpy)_2(ttma)]^+$ in H₂O but in the absence of an electron transfer agent at room temperature leads to displacement of the ttma ligand to form the [Ru(bpy)₂(H₂O)(OH)]⁺ complex, detected by UV-vis and ESI-MS analysis. This is not an unusual behavior for Ru(diimine)₂ complexes and there are several reports in the literature where these complexes form similar Ru(II)-aqua species in the presence of water (Figure S3).^{1,2,3}

Figure S3. (Right) Sequential electronic spectrum of $[Ru(bpy)_2(ttma)]^+$ during photolysis in CH₃CN and in the presence of H₂O. (Left) ESI-MS studies of $[Ru(bpy)_2(ttma)]^+$ after photolysis (in the presence of H₂O) shows the formation of $[Ru(bpy)_2(H_2O)(OH)]^+$ m/z = 490.

 ¹ Petroni, A.; Slep, L. D.; Etchenique, R. *Inorg. Chem.* **2008**, *47*, 951-956.
 ² Hurst, J. K. *Coord. Chem. Rev.* **2005**, *249*, 313-328.
 ³ Zhang, H.; Rajesh, C. S.; Dutta, P. K. J. Phys. Chem A. **2008**, *112*, 808-817

SM4. ¹H NMR comparison of compounds 1, 3 and 4.

Figure S4. ¹H NMR of complex **1**, **3** and **4** recorded in CD₃CN at room temp. Spectrum of **3** is as isolated from flash-quench oxidation of **1** using $Co(NH_3)_5Cl_3$, and is identical to that determined for **3** isolated from dark oxidations of **1** using DDQ and IBX.

		U		
Complex	H1	H2	H avg	
Ru*tma	7.65	7.29	7.47	
1	7.97	7.52	7.745	
2	-	-	-	
3	8.05	7.76	7.905	
4	7.71	7.59	7.65	
4	8.41	7.55	7.98	

Table S4. NMR Peak Assignments

SM5. MS analysis of soluble products obtained after photo-oxidations of 4.

Figure S5. Direct infusion mass spectra of **4** photolyzed in presence of $Co(NH_3)_5Cl_3$ (**a**), DDQ (**b**), and simulated spectra with mass tolerance < 15ppm (**c**) of elemental composition identified by Thermo Xcalibur Qual Browser

SM6. Steady State Quenching Experiments of 1.

Quenching of the 410 nm fluorescence of $[Ru(bpy)_2(ttma)]^+$ by methylviologen (MV²⁺) was investigated by steady state measurements. Five samples of the complex were prepared as MeOH/EtOH solutions with MV²⁺ concentrations between 0 and 11 mM. Stern-Volmer plots of the observed decrease in emission intensity with an increase in the quencher concentration showed a good linear relationship with an intercept of 1. The oxidative-quenching rate constant k_q could be calculated using eq. 1, eq. 2 and the emission lifetime of the complex in the absence of quencher, τ_{em} .

Figure S6A Left) Quenching of luminescent emission for $[Ru(bpy)_2(ttma)]^+$ at 595 nm: solid line, emission intensity without addition of MV^{2+} ; dotted line, after addition of excess of MV^{2+} . Right) Stern-Volmer plot of quenching data.

Figure S6B Left: spectra showing quenching of $Zn(ttma)_2$ (0.132 mM), λ_{em} = 450 nm with $[MV]^{2+}$ (26.3 μ M, dotted line in CH₃CN/CH₃OH). Right: spectra showing increase in intensity of $Zn(ttma)_2$, λ_{em} = 450 nm at 77 °K (dotted line, 26.3 μ M in EtOH/MeOH).

SM7. Singlet oxygen quenching by compound 1.

Quenching of Singlet Oxygen by $[Ru(bpy)_2(ttma)]^+$ Excitation wavelength: 532 nm. External sensitizer: Rose Bengal. For quenching of singlet oxygen in solution, we can use the modified Stern-Vollmer equation

 $k(obsd) = k_d + k_t [[Ru(bpy)_2(ttma)]^+]$

where $k_d = \text{decay rate of singlet oxygen in the solvent (CD₃OD), and <math>k_t = \text{total rate of singlet oxygen removal by [Ru(bpy)₂(ttma)]+. The intercept of the plots of k(obsd) vs. [[Ru(bpy)₂(ttma)]+] are therefore the decay rate of singlet oxygen in CD₃OD, and the slope is the value of <math>k_t$, i.e. the quenching rate of singlet oxygen by [Ru(bpy)₂(ttma)]+. The average value of k_t obtained from the three plots below is $k_t = 5.0 \times 10^8 \text{ M}^{-1} \text{sec}^{-1}$.

Quenching of Singlet Oxygen by [Ru(bpy)₂(ttma)]⁺