Electronic Supplementary Material (ESI) for Dalton Transactions

Facile assembly for fast construction of intercalation hybrids of layered double hydroxides with anionic metalloporphyrin

Juanjuan Ma,^a Lin Liu,^a Shanzhong Li,^a Meng Zhuo,^a Feng Shao,^{a,b} Junyan Gong^a and Zhiwei Tong *ac

^a Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, P.R. China ^b School of Chemical Engineering, China University of Mining and Technology, Xuzhou, 221116, P.R. China ^c SORST, Japan Science and Technology (JST)

Chemical composition of LDHs and MnTSPP/LDH nanocomposites:

(1) Mg-Al-CO₃ LDH

Chemical analysis (C, H, N): C, 2.58; H, 4.11. Metal analysis indicated Mg/Al molar ratios of 1.94. The water content measured by TGA was equal to $1.9 \text{ H}_2\text{O}$ molecules per Al³⁺ cation.

(2) Ni-Al-CO₃ LDH

Chemical analysis (C, H, N): C, 1.84; H, 3.06. Metal analysis indicated Ni/Al molar ratios of 2.13. The water content measured by TGA was equal to $1.8 \text{ H}_2\text{O}$ molecules per Al³⁺ cation.

(3) MnTSPP/Mg-Al LDH_{2.0}

The following data were found from chemical analysis (C, H, N): C 22.05, H 4.47, N 3.28. Metal analysis indicated Mg/Al and Mn/Al molar ratios of 1.17 and 0.13, respectively. The water content measured by TGA was equal to $3.1 \text{ H}_2\text{O}$ molecules per Al³⁺ cation. The intercalated material contains 389 µmol of MnTSPP per gram of material.

(4) MnTSPP/Ni-Al LDH_{1.0}

The following data were found from chemical analysis (C, H, N): C 19.68, H 3.79, N 2.56. Metal analysis indicated Ni/Al and Mn/Al molar ratios of 1.21 and 0.13, respectively. The water content measured by TGA was equal to 2.4 H₂O molecules per Al³⁺ cation. The intercalated material contains 360 μ mol of MnTSPP per gram of material.

Properties	Mg-Al-CO ₃ LDH	Ni-Al-CO ₃ LDH
Chemical formula	$[Mg_{0.66}Al_{0.34}(OH)_2](CO_3)_{0.17} \cdot 0.63H_2O$	$[Ni_{0.68}Al_{0.32}(OH)_2](CO_3)_{0.16} \cdot 0.57H_2O$
d_{110} , Å	1.524	1.517
Unit cell <i>a</i> ,ª Å	3.048	3.034
Layer unit area, ^b Å ²	8.046	7.972
Layer charge density, $e^+/Å^2$	0.0423	0.0401
Equivalent area, Å ² /charge	23.6	24.9

Table S1 Properties of the pristine LDH samples

^a $a = 2d_{110}$.

^b Area of a $M^{II}_{1-x}Al_x$ (OH)₂ octahedral unit = a^2Sin60° .

Fig. S1 FT-IR spectra of carbonated, nitrated and metalloporphyrin intercalated LDH samples: (a) Mg-Al LDHs, (b) Ni-Al LDHs

Fig. S2 SEM images of (a) Mg-Al-CO₃ LDHs and (b) Ni-Al-CO₃ LDHs.

Fig. S3 Zeta potential changes with the addition of different volumes of MnTSPP aqueous solution into Mg-Al LDH (a~d) and Ni-Al LDH (e~h) nanosheets in formamide.