Supporting Information

Carbazole-BODIPY conjugates: design, synthesis, structure and properties

Rajneesh Misra,* Thaksen Jadhav, Bhausaheb Dhokale, Prabhat Gautam, Rekha Sharma,

Ramesh Maragani, and Shaikh M. Mobin

Department of Chemistry, Indian Institute of Technology Indore, Indore- 452 017, India.

rajneeshmisra@iiti.ac.in

Table of Contents
I. Synthesis of ethynyl-carbazoles······S2
II. Crystallographic data······S3
III. Copies of NMR and HRMS Spectra of the New Compounds······S7
IV. Theoretical study ······S19

Synthesis of ethynyl-carbazoles:

i: *tert*-butyl chloride, ZnCl₂, Nitromethane; ii: NBS, DMF; iii: 2-methyl-3-butyn-2-ol, PdCl₂(PPh₃)₂, CuI, Et₃N, THF; iv: KOH, toluene; v: phenylboronic acid, Pd(PPh₃)₄, 2 M Na2CO3, toluene, 90 °C, 12 h; vi: P(OEt)₃, 190 °C, 10 h; vii: ethyl bromide, KOH, DMF; viii: NBS, CHCl₃; ix: 2-methyl-3-butyn-2-ol, PdCl₂(PPh₃)₂, PPh₃, CuI, DIPA; x: KOH, 2-propanol.

Scheme S1. Synthesis of ethynyl-carbazoles a-c.

Crystallographic Data

A single crystal X-ray structural study of **2a-2c** was performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data were collected at 150(2) K using graphitemonochromated Mo K α radiation ($\lambda_{\alpha} = 0.71073$ Å). The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi-omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on F^2 . The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions, and refined with isotropic temperature factors, generally $1.2U_{eq}$ of their parent atoms. The crystal, and refinement data are summarized in Table 1. The CCDC number **994993**, **994994**, and **994991** contain the supplementary crystallographic data for **2a-2c** respectively. These data can be obtained free of charge via www.ccdc.cam.ac.uk (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

Parameter	2a	2b	2c
Identification code	rm124	rm126	rm116
Empirical formula	C33 H34 B F2 N3	C25 H18 B F2 N3	C25 H18 B F2 N3
Formula weight	521.44	409.23	409.23
Temperature	150(2) K	150(2) K	150(2) K
Wavelength(A)	0.71073	0.71073	0.71073
Crystal system, space group	Orthorhombic, P n a 21	Orthorhombic, P 21 21 21	Orthorhombic, P b c n
a∕ (Å)	17.3150(5)	5.5240(3)	30.9020(9)
<i>b/</i> (Å)	16.0128(6)	13.3635(8)	8.2967(2)
c∕ (Å)	10.1781(3)	27.7672(15)	15.5348(4)
α /(°)	90	90	90
β∕ (°)	90	90	90
γ∕ (°)	90	90	90
Volume	2822.00(16) Å ³	2049.8(2) Å ³	3982.88(18) Å ³

Table S1. Crystal data and structure refinement for BODIPY 2a-2c.

Z, Calculated density (mg m ⁻	4, 1.227	4, 1.326	8, 1.365	
·)				
Absorption coefficient /(mm ⁻ ¹)	0.081	0.091	0.094	
F(000)	1104	848	1696	
Crystal size	0.33 x 0.26 x 0.21 mm	0.26 x 0.21 x 0.18 mm	0.33 x 0.26 x 0.21 mm	
θ range for data collection/(°)	3.09 to 25.00	2.93 to 24.99	2.94 to 32.19	
Limiting indices	-20<=h<=20, -19<=k<=18, - 11<=l<=12	-6<=h<=6, -15<=k<=15, - 33<=l<=32	-46<=h<=45, -12<=k<=12, - 22<=l<=22	
Reflections collected / unique	20965 / 4886 [R(int) = 0.0458]	12564 / 3620 [R(int) = 0.0583]	52570 / 6770 [R(int) = 0.0727]	
Completeness to theta	$\theta = 25.00; 99.7 \%$	$\theta = 24.99; 99.8 \%$	$\theta = 25.00; 99.8 \%$	
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	
Max. and min. transmission	0.9833 and 0.9739	0.9838 and 0.9767	0.9806 and 0.9697	
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	
Data / restraints / parameters	4886 / 1 / 359	3620 / 0 / 282	6770 / 0 / 281	
Goodness-of-fit on F ²	1.017	1.081	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0461, wR2 = 0.1099	R1 = 0.0466, wR2 = 0.1219	R1 = 0.0541, wR2 = 0.1267	
R indices (all data)	R1 = 0.0609, wR2 = 0.1203	R1 = 0.0584, wR2 = 0.1333	R1 = 0.0915, wR2 = 0.1468	
Largest diff. peak and hole (eÅ ⁻³)	0.180 and -0.192	0.156 and -0.177	0.426 and -0.254	

Fig. S2 Crystal structure of BODIPY 2b.

Fig. S3 Crystal structure of BODIPY 2c.

Fig. S4 Packing diagram of BODIPY 2a.

Fig. S5 Comparison of selected bond angles of the crystal structures and DFT optimized structures of BODIPYs 2a-2c.

Copies of NMR and HRMS Spectra of the New Compounds:

¹H NMR of 2a

⁹F NMR of **2a**

S9

HRMS of 2a

S10

¹⁹F NMR of **2b**

HRMS of 2b

¹³C NMR of 2c

HRMS of 2c

Theoretical study:

Fig. S6 Frontier molecular orbitals of BODIPYs **2a- 2c** at the B3LYP/6-31 G(d) level in dichloromethane and cyclohexane solvents using IEFPCM model.

Excitation energies and oscillator strengths:

Calculation method: B3LYP/6-31G(d) level in dichloromethane using IEFPCM model.

BODIPY 2a- in DCM

Excited State 1: Singlet-A 1.4739 eV 841.18 nm f=0.0007 <S**2>=0.000 138 ->139 -0.70001 This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1666.89641591

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.2892 eV 541.61 nm f=0.0003 <S**2>=0.000 137 ->139 -0.70311

Excited State	3:	Singlet-A	2.6238 eV	472.54 nm	f=0.5174	<s**2>=0.000</s**2>
134 ->139		0.19082				
136 ->139		0.68435				

- Excited State 4: Singlet-A 2.7242 eV 455.13 nm f=0.0046 <S**2>=0.000 131 ->139 -0.12460 135 ->139 -0.68335
- Excited State 5: Singlet-A 2.9988 eV 413.45 nm f=0.1205 <S**2>=0.000 134 ->139 0.67993 136 ->139 -0.19424
- Excited State 6: Singlet-A 3.1969 eV 387.83 nm f=0.0132 <S**2>=0.000 132 ->139 -0.28417 133 ->139 0.64170

BODIPY 2b- DCM

Excitation energies and oscillator strengths:

106 ->107 0.70588 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.3971 eV 517.22 nm f=1.1228 <S**2>=0.000 Singlet-A 105 ->107 0.70434 Excited State 3: Singlet-A 2.5805 eV 480.46 nm f=0.4795 <S**2>=0.000 103 ->107 -0.15527 104 ->107 0.69229 3.0015 eV 413.07 nm f=0.0870 <S**2>=0.000 Excited State 4: Singlet-A 103 ->107 0.68861 104 ->107 0.15815 Excited State 5: 3.2261 eV 384.32 nm f=0.0298 <S**2>=0.000 Singlet-A 100 ->107 -0.22487 101 ->107 0.10547 102 ->107 0.66008 3.4718 eV 357.12 nm f=0.0059 <S**2>=0.000 Excited State 6: Singlet-A 101 ->107 0.68915 102 ->107 -0.11899 Excited State 7: Singlet-A 3.6030 eV 344.12 nm f=0.1984 <S**2>=0.000 100 ->107 0.65373 102 ->107 0.20864 105 ->108 0.10162

Excited State 1:

Singlet-A

1.9539 eV 634.54 nm f=0.0455 <S**2>=0.000

Excited State 8: Singlet-A 3.6766 eV 337.22 nm f=0.0000 <S**2>=0.000

99 ->107 0.70435

Excited State 9: Singlet-A 3.7502 eV 330.61 nm f=0.0645 <S**2>=0.000 105 ->109 0.11293 106 ->108 0.68581

Excited State 10: Singlet-A 4.3014 eV 288.24 nm f=0.1629 <S**2>=0.000 98 ->107 -0.16211 105 ->108 0.62484 106 ->109 -0.25925

BODIPY 2c - DCM

Excited State 1: Singlet-A 1.6874 eV 734.77 nm f=0.0000 <S**2>=0.000 106 ->107 -0.69543

This state for optimization and/or second-order correction.

Copying the excited state density for this state as the 1-particle RhoCI density.

2.5136 eV 493.25 nm f=0.0000 <S**2>=0.000 Excited State 2: Singlet-A 104 ->107 0.70242 Excited State 3: Singlet-A 2.6477 eV 468.27 nm f=0.5376 <S**2>=0.000 102 ->107 -0.17930 -0.68721 105 ->107 3.0352 eV 408.49 nm f=0.1144 <S**2>=0.000 Excited State 4: Singlet-A 102 ->107 -0.68302 105 ->107 0.18244

Excited State 5: Singlet-A 3.1215 eV 397.19 nm f=0.0000 <S**2>=0.000 98 ->107 -0.11093

103 ->107	-0.68641
106 ->107	-0.10437

Excited State 6: Singlet-A 3.2319 eV 383.63 nm f=0.0140 <S**2>=0.000 100 ->107 0.34507 101 ->107 -0.61506

Calculation method: B3LYP/6-31G(d) level in cyclohexane using IEFPCM model.

BODIPY 2a - in cyclohexane

Excited State 1: Singlet-A 1.5444 eV 802.79 nm f=0.0003 <S**2>=0.000 138 ->139 -0.70024 This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1666.88790575

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.3437 eV 529.01 nm f=0.0002 <S**2>=0.000 137 ->139 0.70317

Excited State	3:	Singlet-A	2.7512 eV	450.65 nm	f=0.2777	<s**2>=0.000</s**2>
134 ->139		-0.30622				
135 ->139		0.24261				
136 ->139		0.58965				

Excited State	4:	Singlet-A	2.7833 eV	445.46 nm	f=0.0442	<s**2>=0.000</s**2>
131 ->139		0.11398				
134 ->139		0.15224				

135 ->139	0.63859
136 ->139	-0.20419

Excited State	5:	Singlet-A	3.043	3 eV	407.40 nm	f=0.2000	<s**2>=0.000</s**2>
134 ->139		0.61773					
136 ->139		0.34555					

Excited State 6: Singlet-A 3.2023 eV 387.17 nm f=0.0036 <S**2>=0.000 132 ->139 -0.23454 133 ->139 0.66423

BODIPY **2b** - in cyclohexane

Excited State 1: Singlet-A 2.1049 eV 589.02 nm f=0.0300 <S**2>=0.000 106 ->107 0.70555 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1352.36557282 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.5838 eV 479.85 nm f=0.9528 <S**2>=0.000 104 ->107 0.70526 Excited State 3: Singlet-A 2.7088 eV 457.72 nm f=0.3378 <S**2>=0.000 103 ->107 0.25489 105 ->107 0.66410 Excited State 4: Singlet-A 3.0285 eV 409.39 nm f=0.1138 <S**2>=0.000

103 ->107 0.65791

105 ->107 -0.25915

Excited State 5: Singlet-A 3.2196 eV 385.09 nm f=0.0335 <S**2>=0.000 100 ->107 -0.10538 102 ->107 0.69592

Excited State 6: Singlet-A 3.6035 eV 344.06 nm f=0.0059 <S**2>=0.000 101 ->107 -0.69013 106 ->108 0.11027

BODIPY 2c - in cyclohexane

Excited State	1:	Singlet-A	1.8454 eV	7 671.87 nm	f=0.0001	<s**2>=0.000</s**2>
102 ->107		-0.10077				
106 ->107		0.69473				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1352.37214855

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.6653 eV 465.19 nm f=0.0001 <S**2>=0.000 104 ->107 -0.70229

Excited State	3:	Singlet-A	2.7838 eV	445.38 nm	f=0.3512	<s**2>=0.000</s**2>
103 ->107	-	0.32036				
105 ->107	-	0.63474				
105 <-107		0.10009				

Excited State	4:	Singlet-A	3.0751 eV	403.19 nm	f=0.1916	<s**2>=0.000</s**2>
103 ->107		-0.62915				
105 ->107		0.32614				

Excited State	5:	Singlet-A	3.2373 eV	382.98 nm	f=0.0038	<s**2>=0.000</s**2>
100 ->107		0.29773				
101 ->107		-0.63952				

Excited State 6: Singlet-A 3.2587 eV 380.47 nm f=0.0002 <S**2>=0.000 98 ->107 0.11046 102 ->107 0.68571 106 ->107 0.10824

Calculation method: B3LYP/6-31G(d) level

Data for BODIPY 2a

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
	 6	0	3.458350	-2.849062	-0.140716
2	1	0	2.382911	-2.950034	-0.130927
3	6	0	4.405450	-3.866777	-0.181133
4	1	0	4.226359	-4.932699	-0.212799
5	6	0	5.667463	-3.242599	-0.166213
6	1	0	6.653223	-3.687217	-0.189447
7	7	0	5.525773	-1.907344	-0.118216
8	5	0	6.694954	-0.862563	-0.169153
9	6	0	5.696222	2.754369	0.272720
10	6	0	4.437430	2.168574	0.203461
11	1	0	3.474922	2.657758	0.257954
12	6	0	4.636632	0.773992	0.060381
13	6	0	3.706748	-0.288396	-0.022429
14	6	0	4.165359	-1.624013	-0.100045
15	7	0	6.004208	0.528533	0.042633
16	9	0	7.595784	-1.107010	0.849560
17	6	0	6.634238	1.708394	0.169212

18	1	0	7.714991	1.752579	0.179155
19	9	0	7.306879	-0.902083	-1.408937
20	1	0	5.928734	3.803965	0.388870
21	6	0	2.327547	0.008175	-0.014153
22	6	0	1.145765	0.318981	-0.018232
23	6	0	-0.173274	0.837936	-0.023861
24	6	0	-1.362286	0.070259	-0.043046
25	6	0	-0.311739	2.249664	-0.011797
26	6	0	-2.624916	0.731180	-0.046182
27	7	0	-1.572319	-1.298184	-0.064625
28	6	0	-1.541786	2.911025	-0.018750
29	1	0	0.608913	2.819495	0.001395
30	6	0	-3.639280	-0.303194	-0.057838
31	6	0	-2.703533	2.119229	-0.036818
32	6	0	-2.949037	-1.536685	-0.059275
33	6	0	-0.570490	-2.355567	0.005230
34	6	0	-1.660050	4.447079	-0.008297
35	6	0	-5.034936	-0.284564	-0.067944
36	1	0	-3.683032	2.589409	-0.041409
37	6	0	-3.647422	-2.743166	-0.061990
38	1	0	-0.957760	-3.206820	-0.564147
39	1	0	0.322040	-2.005294	-0.515961
40	6	0	-0.234995	-2.773197	1.440603
41	6	0	-2.452308	4.894079	1.243238
42	6	0	-2.405833	4.913375	-1.281124
43	6	0	-0.285360	5.141595	0.022354
44	6	0	-5.764193	-1.481068	-0.075684
45	1	0	-5.552770	0.670826	-0.068751
46	6	0	-5.041725	-2.692716	-0.071735
47	1	0	-3.138059	-3.701877	-0.053406
48	1	0	-1.132913	-3.107880	1.970070
49	1	0	0.487739	-3.596786	1.437862
50	1	0	0.202781	-1.938564	1.996785
51	1	0	-2.553769	5.985934	1.260602
52	1	0	-3.460887	4.467410	1.263033
53	1	0	-1.941101	4.585446	2.162169

54	1	0	-2.509299	6.005229	-1.284789
55	1	0	-1.859569	4.620568	-2.184897
56	1	0	-3.411679	4.484712	-1.345511
57	1	0	0.287125	4.876213	0.918660
58	1	0	0.318305	4.893332	-0.858151
59	1	0	-0.422745	6.228552	0.030163
60	6	0	-7.305384	-1.436566	-0.085841
61	1	0	-5.577433	-3.634895	-0.074117
62	6	0	-7.809824	-0.695515	1.175229
63	6	0	-7.935426	-2.842688	-0.094971
64	6	0	-7.792447	-0.687043	-1.348763
65	1	0	-7.433098	0.331674	1.222845
66	1	0	-8.905775	-0.648331	1.179421
67	1	0	-7.488326	-1.211045	2.087375
68	1	0	-9.027648	-2.755385	-0.103048
69	1	0	-7.644321	-3.415925	-0.982643
70	1	0	-7.658181	-3.421560	0.793503
71	1	0	-7.457920	-1.196106	-2.259829
72	1	0	-8.888241	-0.640235	-1.367900
73	1	0	-7.415629	0.340622	-1.384068

Total Energy (HF) = -1666.9466894 Hartree

Data for BODIPY 2b

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	3.469168	-2.663789	0.204349
2	1	0	2.477525	-3.093218	0.238472
3	6	0	4.690065	-3.324025	0.278433
4	1	0	4.858964	-4.387087	0.381304
5	6	0	5.690234	-2.334148	0.199333
6	1	0	6.766222	-2.443813	0.219382
7	7	0	5.133713	-1.117086	0.083229

8	5	0	5.908183	0.235438	-0.101327
9	6	0	3.787560	3.365722	-0.110672
10	6	0	2.785890	2.401632	-0.090961
11	1	0	1.715548	2.554299	-0.090300
12	6	0	3.427260	1.140161	-0.058611
13	6	0	2.892753	-0.165951	0.003067
14	6	0	3.753752	-1.281922	0.083667
15	7	0	4.801134	1.347227	-0.061337
16	9	0	6.801725	0.417125	0.936583
17	6	0	5.014623	2.673359	-0.092062
18	1	0	6.022992	3.064769	-0.100649
19	9	0	6.544867	0.249357	-1.328922
20	1	0	3.667823	4.440195	-0.131671
21	6	0	1.494152	-0.354861	-0.000346
22	6	0	0.286045	-0.519942	-0.009457
23	6	0	-1.119167	-0.714694	-0.021738
24	6	0	-1.650676	-2.029477	0.055965
25	6	0	-1.978220	0.398337	-0.108949
26	6	0	-3.020240	-2.243409	0.048542
27	1	0	-0.964242	-2.866780	0.122905
28	6	0	-3.350858	0.168851	-0.120934
29	1	0	-1.559712	1.397545	-0.161406
30	6	0	-3.888937	-1.147529	-0.037593
31	1	0	-3.414069	-3.254059	0.110514
32	7	0	-4.393875	1.081553	-0.213083
33	6	0	-5.324944	-1.008546	-0.066860
34	6	0	-5.595810	0.383421	-0.166529
35	6	0	-4.252358	2.530036	-0.253532
36	6	0	-6.387846	-1.920228	-0.020075
37	6	0	-6.906907	0.869170	-0.211099
38	1	0	-3.340908	2.761020	-0.815080
39	1	0	-5.085441	2.929632	-0.840972
40	6	0	-4.210443	3.178258	1.134259
41	6	0	-7.691904	-1.440431	-0.068352
42	1	0	-6.194640	-2.987112	0.054167
43	6	0	-7.943664	-0.059295	-0.162572

4	4 1	L (C	-7.119023	1.931788	-0.278133
4	5 1	L C	C	-3.367332	2.796601	1.719185
4	6 1	L C	C	-4.101150	4.264614	1.041830
4	7 1	L C	C	-5.130451	2.971311	1.690412
4	8 1	L C	C	-8.525698	-2.135247	-0.031754
4	9 1	L C	C	-8.970656	0.293931	-0.195834

Total Energy (HF) = -1352.4417111 Hartree

Data for BODIPY 2c

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.827008	2.470083	0.151835
2	1	0	-1.757112	2.625984	0.151209
3	6	0	-3.830974	3.428280	0.239612
4	1	0	-3.713350	4.500169	0.320328
5	6	0	-5.056011	2.733344	0.209359
6	1	0	-6.065275	3.120049	0.253186
7	7	0	-4.839424	1.410971	0.109003
8	5	0	-5.944780	0.305347	-0.022280
9	6	0	-4.717193	-3.269983	-0.017138
10	6	0	-3.497948	-2.601632	-0.043414
11	1	0	-2.505210	-3.029329	-0.065934
12	6	0	-3.786009	-1.216210	-0.023156
13	6	0	-2.926687	-0.094694	-0.004124
14	6	0	-3.465157	1.209398	0.071536
15	7	0	-5.165728	-1.056116	0.012922
16	9	0	-6.820862	0.379582	1.043993
17	6	0	-5.719357	-2.280539	0.016805
18	1	0	-6.794784	-2.394169	0.042086
19	9	0	-6.604164	0.439726	-1.230964
20	1	0	-4.882806	-4.338574	-0.017397
21	6	0	-1.529281	-0.277900	-0.042984

22	6	0 -	-0.320220	-0.436446	-0.078707
23	6	0	1.084298	-0.620120	-0.119108
24	6	0	1.627118	-1.930858	-0.199914
25	6	0	1.949443	0.490900	-0.076338
26	6	0	2.994989	-2.149899	-0.238610
27	1	0	0.945498	-2.774771	-0.228947
28	6	0	3.324903	0.289530	-0.113618
29	1	0	1.532498	1.491255	-0.012734
30	6	0	3.843901	-1.034929	-0.199158
31	1	0	3.385646	-3.161068	-0.293465
32	6	0	4.467946	1.179441	-0.083773
33	7	0	5.224090	-0.980077	-0.235687
34	6	0	5.620928	0.355889	-0.152200
35	6	0	4.613659	2.568539	-0.007178
36	6	0	6.121167	-2.127555	-0.263411
37	6	0	6.909018	0.897673	-0.137466
38	6	0	5.894536	3.113885	0.004103
39	1	0	3.739867	3.212680	0.044190
40	1	0	5.633098	-2.919283	-0.840979
41	1	0	7.013500	-1.838112	-0.827906
42	6	0	6.504421	-2.633608	1.131183
43	6	0	7.026919	2.284184	-0.060187
44	1	0	7.793261	0.269143	-0.180514
45	1	0	6.022146	4.190654	0.064502
46	1	0	5.617409	-2.948120	1.690494
47	1	0	7.181731	-3.490949	1.049292
48	1	0	7.008653	-1.850627	1.706499
49	1	0	8.017390	2.730486	-0.047138

Total Energy (HF) = -1352.4428201 Hartree