Dinuclear copper(II) complexes based on two multidentate flexible Schiff-base ligands and one unusual *in situ* formed diphenolate 2,6piperidin-4-one derivative

Yuan Dai,^a Yin-Ge Wang,^b Jiao Geng,^a Yu-Xin Peng^a and Wei Huang,^{a,}

^a State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

^b College of Sciences, Nanjing Tech University, Nanjing, 210009, P. R. China

Electronic Supporting Information

Syntheses of Schiff-base ligands HL₁ and HL₂.

HL_{1: *N*-(3-Aminopropyl)imidazole (2.05 g, 16.4 mmol) was added into an ethanol solution (20 cm³) of 3,5-dichlorosalicylaldehyde (3.13 g, 16.4 mmol), and three drops of glacial acetic acid were added. The mixture was refluxed for 5 h and cooled to room temperature. The solvent was removed by a rotatory evaporator and the yellow solid HL₁ was obtained in a yield of 3.81 g (78 %). M.P: 90–92 °C. *Anal.* Calc. for C₁₃H₁₃Cl₂N₃O: C, 52.37; H, 4.39; N, 14.09 %. Found: C, 52.25; H, 4.12; N, 13.95 %. Main FT–IR absorptions (KBr pellets, cm⁻¹): 3438 (w), 1637 (vs), 1508 (m), 1450 (s), 1222 (m), 748 (m). ¹H NMR (300 MHz, CD₃OD) δ = 8.40 (s, 1H, H_c), 7.72 (s, 1H, H_g), 7.45 (d, *J* = 1.8 Hz, 1H, H_h), 7.28 (d, *J* = 1.8 Hz, 1H, H_i), 7.19 (s, 1H, H_a), 6.98 (s, 1H, H_b), 4.17 (t, *J* = 6.9 Hz, 2H, H_f), 3.66 (t, *J* = 6.8 Hz, 2H, H_d), 2.20-2.29 (tt, *J* = 6.6 and 6.9 Hz, 2H, H_e). ¹³C NMR (75 MHz, CDCl3): δ = 163.8, 156.3, 131.1, 128.3, 121.6, 121.0, 118.6, 53.7, 43.4, 30.5 ppm. UV–Vis in methanol, λ_{max} = 372 and 295 nm. ESI–TOF–MS (negative): *m/z* = 296.25 (100 %), [M-H]⁻.}

HL₂: Synthesis of HL₂ was similar to that of HL₁ except that 3,5dibromosalicylaldehyde (6.35 g, 16.4 mmol) was used. Yield: 5.33 g (84 %). M.P: 105–107 °C *Anal.* Calc. for C₁₃H₁₃Br₂N₃O: C, 40.34; H, 3.39; N, 10.86 %. Found: C, 40.18; H, 3.56; N, 10.77 %. Main FT–IR absorptions (KBr pellets, cm⁻¹): 3415 (w), 3051(w), 1638 (vs), 1501 (s), 1448 (s), 1228 (m), 865 (m). ¹H NMR (300 MHz, CD₃OD) δ = 8.38 (s, 1H, H_c), 7.74 (d, *J* = 2.4 Hz, 1H, H_h), 7.69 (s, 1H, H_g), 7.48 (d, *J* = 2.4 Hz, 1H, H_i), 7.18 (s, 1H, H_a), 6.97 (s, 1H, H_b), 4.17 (t, *J* = 7.1 Hz, 2H, H_f), 3.66 (t, *J* = 6.8 Hz, 2H, H_d), 2.20-2.29 (tt, *J* = 6.9 and 6.9 Hz, 2H, H_e). ¹³C NMR (75 MHz, CD3OD): δ = 166.6, 163.4, 139.6, 135.0, 119.9, 115.3, 108.1, 53.9, 45.5, 32.5 ppm. UV–Vis in methanol, λ_{max} = 375 and 291 nm. ESI–TOF–MS (negative): *m/z* = 385.83 (100 %), [M-H]⁻.

1			
O2–Cu1–O1	161.5(1),	O2–Cu1–N1	88.6(1)
O1–Cu1–N1	90.8(1),	O2–Cu1–N4	90.7(1)
O1–Cu1–N4	88.8(1)	N1–Cu1–N4	176.6(1)
O2–Cu1–N3A	96.6(1)	O1–Cu1–N3A	101.8(1),
N1–Cu1–N3A	94.4(1),	N4–Cu1–N3A	89.2(1)
2			
O1–Cu1–O2	162.0(5)	O1–Cu1–N4	87.4(6),
O2–Cu1–N4	90.5(5),	O1–Cu1–N1	92.0(6),
O2–Cu1–N1	89.0(5),	N4–Cu1–N1	176.2(6)
O1–Cu1–N3A	100.9(6)	O2–Cu1–N3A	97.0(5)
N4–Cu1–N3A	88.9(6)	N1–Cu1–N3A	94.9(6)
3			
O1–Cu1–O3	171.4(2)	O1–Cu1–N1	86.9(2)
O3–Cu1–N1	88.2(2),	O1–Cu1–N3	92.4(2)
O3–Cu1–N3	93.8(2)	N1–Cu1–N3	168.6(2)

Table SI2. Hydrogen bonding parameters (Å, °) in complex **3**.

D–H···A	<i>d</i> (D–H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	∠DHA	Sym. Code
3					
O7−H7B…O3	0.85	2.30	2.890(1)	127	1- <i>x</i> , 1- <i>y</i> , 2- <i>z</i>
C15–H15…Cl2	0.93	2.66	3.547(6)	160	
C21–H21A…O1	0.97	2.60	3.190(7)	119	

Fig. SI1 FT–IR spectrum of ligand HL₁.

Fig. SI2 FT–IR spectrum of ligand HL₂.

Fig. SI3 FT–IR spectrum of complex 1.

Fig. SI4 FT–IR spectrum of complex 2.

Fig. SI5 FT–IR spectrum of complex 3.

Fig. SI6 Negative ESI–MS (top) and simulated one with isotope distribution (bottom) for ligand HL₁.

Fig. SI7 Negative ESI–MS (top) and simulated one with isotope distribution (bottom) for ligand HL₂.

Fig. SI8 ¹H NMR spectrum of HL_1 .

Fig. SI9 ¹H NMR spectrum of HL_2 .

Fig. SI10 ¹³C NMR spectrum of HL₁.

Fig. SI11 ¹³C NMR spectrum of HL₂.

Fig. SI12 UV-Vis spectral comparisons for HL₁, HL₂, complexes 1 and 2 in methanol as well as complex 3 in DMF.

Fig. SI13 The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for complex 1.

Fig. SI14 The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for complex 2.

Fig. SI15 The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for complex 3.

Fig. SI16 Perspective view of the hydrogen bonding interactions in complex 3.