Supplementary Information

Highly fluorescent complexes with 3-isocyanoperylene and *N*-(2,5-di-tert-butylphenyl)-9-isocyano-perylene-3,4-dicarboximide

Sergio Lentijo,[†] J. Emilio Expósito,[†] Gabriel Aullón,[‡] Jesús A. Miguel,^{†,*} and Pablo Espinet.^{†,*} *IU CINQUIMA Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid, Spain; and Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.*

Fig. S1 Absorption spectra of PMI-NC and their complexes 5a, 9a-12a, recorded in $CHCl_3$ solution (~10⁻⁵ M) at room temperature

Fig. S2 Absorption spectra of Per-NC and their complexes **5b-11b**, recorded in CHCl₃ solution $(\sim 10^{-5} \text{ M})$ at room temperature

Fig. S3 Emission spectra of **11b** in different solvents (ca. 10^{-5} M) at room temperature.

Fig. S4 Schematic representation of main expected transition in the absorption spectra of PMIH and perylene.

Table S1 Calculated absorption parameters (wavelengths in nm and their intensities) for R-X (R =PMI and Per) compounds in gas phase and chloroform solution.

Table S2 Calculated absorption peaks for $[M(CO)_5(CNR)]$ (M = Cr, Mo, W; R = PMI, Per).

Fig. S5 ¹H and ¹⁹F NMR spectra

Fig. S6 IR spectra

Fig. S7 Fluorescence decays in dichloromethane, at room temperature

[†] Universidad de Valladolid

[‡] Universitat de Barcelona

Figure S1. Absorption spectra of PMI-NC and their complexes 5a, 9a-12a, recorded in CHCl₃ solution ($\sim 10^{-5}$ M) at room temperature

Figure S2. Absorption spectra of Per-NC and their complexes **5b-11b**, recorded in $CHCl_3$ solution (~10⁻⁵ M) at room temperature

Fig. S3 Emission spectra of **11b** in different solvents (ca. 10^{-5} M) at room temperature.

Fig. S4 Schematic representation of main expected transition in the absorption spectra of PMIH and perylene.

Table S1.Calculated absorption parameters (wavelengths in nm, oscillator strength (f), andcoeficients of the main contributions of the orbitals [in brackets]) for R-X (R = PMI and Per)compounds in gas phase and chloroform solution.

λ (ƒ)	Solvent	Н	NC
		477 (0.61) [0.62]	490 (0.69) [0.61]
PMI-X	Gas phase	260 (0.09), 259 (0.11) [0.48, 0.38],[0.44,0.40]	261 (0.19) [0.55,0.23]
_	CHCl3	500 (0.77) [0.63]	512 (0.86) [0.63]
		262 (0.26) [0.55,0.15]	263 (0.22) [0.51,0.30]
	Gas	428 (0.36) [0.62]	446 (0.44) [0.62]
Der V —	phase	253 (0.30) [0.48,0.36]	257 (0.28) [0.48,0.25]
Pel-A	CUCI	442 (0.48) [0.63]	465 (0.58) [0.63]
	CHCl ₃	257 (0.51) [0.50,0.38]	260 (0.44) [0.51,0.22]

(a) Organics

^{*a*} Coefficients are $[\pi_{HOMO} \rightarrow \pi^*_{LUMO}]$ for first transition in all cases,

and $[\pi_{HOMO} \rightarrow \pi^*, \pi \rightarrow \pi^*_{LUMO}]$ for second band of perylene systems.

(b) Chromium complexes

λ (ƒ)	[(PMI-NC)Cr(CO) ₅]	[(PerNC)Cr(CO) ₅]
	518 (0.97)	468 (0.70)
	$\pi(PMI)_H \rightarrow \pi^*(PMI-NC)_L \ [0.70]$	$\pi(Per)_H \rightarrow \pi^*(Per-NC)_L \ [0.70]$
	281 (0.08)	259 (0.15)
Gas phase	$\pi(CO) + \pi d \rightarrow \pi^*(CO)_{eq} [0.52]$ $\pi(CO) \rightarrow \pi^*(PMI-NC) [0.33]$	$\pi(Per)_H \rightarrow \pi^*(Per) [0.42]$ $\pi d \rightarrow \pi^*(Per) [0.26]$
	266 (0.09)	
	$\pi(CO) + \pi d \rightarrow \pi^*(PMI-NC) [0.54]$ $\pi(PMI) \rightarrow \pi^*(PMI) [0.24]$	
	536 (1.14)	482 (0.84)
	$\pi(PMI)_H \rightarrow \pi^*(PMI-NC)_L \ [0.70]$	$\pi(Per)_H \rightarrow \pi^*(Per-NC)_L \ [0.70]$
	282 (0.10)	265 (0.19)
CHCl	$\pi(CO) + \pi d \rightarrow \pi^*(CO)_{eq} [0.54]$ $\pi(CO) + \pi d \rightarrow \pi^*(PMI-NC) [0.31]$	$\pi(Per)_H \rightarrow \pi^*(Per) [0.35]$ $\pi d \rightarrow \pi^*(CO)_{eq} [0.31]$
chicity	264 (0.12)	$\pi d \rightarrow \pi^*(CO)_{eq} \ [0.24]$
	$\pi(PMI) \rightarrow \pi^*(PMI) \ [0.38]$	262 (0.22)
	$\pi(CO) + \pi d \rightarrow \pi^*(CO)_{eq} \ [0.35]$	$\pi(Per)_H \rightarrow \pi^*(Per) \ [0.37]$
		$\pi d \rightarrow \pi^*(CO)_{eq} [0.28]$ $\pi d \rightarrow \pi^*(NC) [0.23]$

Annotation for the involved orbitals:

- $\pi(PMI)$ and $\pi(Per)$ indicate generic occupied orbitals as well as $\pi^*(PMI)$, and $\pi^*(Per)$ are empty ones. Since all of these orbitals are of type π , only H and L are emphasized. Orbital contribution on the nitrile group included when remarkable.

- $\pi(Ph)$ and $\pi^*(Ph)$ are occupied and empty orbitals centered in the phenylic diimido substituent.
- Other fragments such as C_6F_5 or CO are also used to designate centered π orbitals.
- Other *d*-orbitals are generally written as πd .

(c) Gold complexes

λ (ƒ)	$[(PMI-NC)Au(C_6F_5)]$	$[(\text{PerNC})\text{Au}(\text{C}_6\text{F}_5)]$
	519 (0.79)	474 (0.69)
	$\pi(PMI)_H \rightarrow \pi^*(PMI-NC)_L \ [0.68]$	$\pi(Per)_H \rightarrow \pi^*(Per-NC)_L \ [0.70]$
	481 (0.15)	296 (0.25)
	$\pi(C_6F_5) \rightarrow \pi^*(PMI-NC)_L \ [0.64]$	$\pi(C_6F_5) \twoheadrightarrow \pi^*(Per\text{-}NC) \ [0.53]$
	325 (0.12)	262 (0.19)
Gas phase	$\pi(C_6F_5) \rightarrow \pi^*(PMI-NC) \ [0.63]$	$\pi(Per)_H \rightarrow \pi^*(Per-NC) \ [0.49]$
	269 (0.10)	$\pi(Per) \rightarrow \pi^*(Per-NC)_L \ [0.26]$
	$\pi(PMI)_H \rightarrow \pi^*(PMI-NC) \ [0.64]$	
	264 (0.12)	
	$\pi(PMI)_H \rightarrow \pi^*(PMI) \ [0.48]$	
	$\pi(PMI) \rightarrow \pi^*(PMI-NC) \ [0.30]$	
	527 (1.08)	493 (0.79)
	$\pi(PMI)_H \rightarrow \pi^*(PMI-NC)_L \ [0.71]$	$\pi(Per)_H \rightarrow \pi^*(Per-NC)_L \ [0.70]$
	332 (0.08)	297 (0.14)
	$\pi(PMI) \rightarrow \pi^*(PMI-NC)_L \ [0.46]$	$\pi(C_6F_5) \rightarrow \pi^*(Per-NC) \ [0.49]$
	$\pi(PMI) \rightarrow \pi^*(PMI-NC)_L \ [0.37]$	266 (0.30)
	292 (0.16)	$\pi(Per) \rightarrow \pi^*(Per-NC)_L \ [0.44]$
CHCl	$\pi(PMI)_H \rightarrow \pi^*(PMI) \ [0.40]$	$\pi(Per)_H \rightarrow \pi^*(Per-NC) \ [0.39]$
CHCI3	$\pi(C_6F_5) \rightarrow \pi^*(PMI-NC)_L \ [0.37]$	262 (0.23)
	288 (0.10)	$\pi(Per) \rightarrow \pi^*(Per-NC)_L \ [0.52]$
	$\pi(C_6F_5) \rightarrow \pi^*(PMI-NC)_L \ [0.59]$	$\pi(Per)_H \rightarrow \pi^*(Per-NC) \ [0.33]$
	$\pi(PMI)_H \rightarrow \pi^*(PMI) \ [0.27]$	
	264 (0.15)	
	$\pi(PMI)_H \rightarrow \pi^*(PMI-NC) [0.53]$	
	$\pi(PMI) \rightarrow \pi^*(PMI-NC)_L \ [0.34]$	

D V	Cr(CO) ₅		Mo(CO) ₅		W(CO) ₅	
К-А	Gas phase	CHCl ₃	Gas phase	CHCl ₃	Gas phase	CHCl ₃
PMI-NC-X λ (f)	518 (0.97) 281 (0.08) 266 (0.09)	536 (1.14) 282 (0.10) 264 (0.12)	526 (0.99) 299 (0.16) 266 (0.07) 264 (0.06)	542 (1.19) 300 (0.16) 282 (0.07) 267 (0.11) 266 (0.13)	530 (1.02) 303 (0.12) 269 (0.12) 265 (0.07)	547 (1.22) 305 (0.14) 268 (0.20) 266 (0.10)
Per-NC-X $\lambda(f)$	468 (0.70) 259 (0.15)	482 (0.84) 265 (0.19) 262 (0.22)	474 (0.75) 285 (0.11) 261 (0.24) 256 (0.08)	487 (0.90) 286 (0.10) 264 (0.37) 259 (0.05)	477 (0.78) 286 (0.10) 262 (0.22) 259 (0.07)	492 (0.93) 287 (0.09) 265 (0.34)

Table S2.Calculated absorption peaks for $[M(CO)_5(CNR)]$ (M = Cr, Mo, W; R = PMI, Per).

Fig. S5¹H and ¹⁹F NMR spectra

4B 8.2357
8.2357
8.21883
8.218194
8.131966
8.131966
8.131966
8.131966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.1313966
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
8.131496
<li -7,7539 -7,7150 -7,7150 -7,7150 -7,7150 -7,7150 7,7151 -7,5136 7,5156 7,5156 7,5156 7,5156 7,5176 7,5176 7 1.01-0.98-0.95 0.97 1.96-0.98-2.95-8.1 8.0 f1 (ppm) 7.9 7.8 7.7 7.6 7.5 7.1 7. .0 8.2 7.3 7.2 8.9 8.8 8.7 8.6 8.5 8.4 8.3 7.4

1.21-

,

385.

cm- 500

Fig. S7. Fluorescence decays in dichloromethane, at room temperature

Mono-exponential and bi-exponential fluorescence decay models were fitted to each decay. Eqn (1) describes the mono-exponential decay model:

$$I(t) = I_0 \cdot \exp(-t/\tau) \tag{1}$$

where I_0 is the relative intensity, t is the time and τ is the fluorescence lifetime, both expressed in ns. The bi-exponential decay model is expressed by Equation (2) as:

$$I(t) = A + B_1 \cdot \exp(-t/\tau_1) + B_2 \cdot \exp(-t/\tau_2)$$
(2)

where B_1 and B_2 are the relative intensities associated with two lifetimes, τ_1 and τ_2 , respectively.

Mono-exponential models are normally used to fit fluorescence decay. Bi-exponential fits may be more appropriate for samples containing non-linear decays. Fitting was done using FAST software from Edinburgh Instruments by a least-squares algorithm using a reconvolution approach. In this method, convolution of Equation (1) or (2) with the instrumental response function (IRF) is done prior to evaluating the goodness of fit with a weighted χ^2 parameter.

v Discrete Components Analysis (Tail fitting)

Fitting range c ²		: [150; 2300] channels : 1.043		
	Exp Num	В	f	t (ns)
	1	874.7	100.0	4.600
Back Shift	ground	: 0.104 : 0 ns		

v Discrete Components Analysis (Tail fitting)

5a

v Discrete Components Analysis (Tail fitting)

Fitting range c ²		: [150; : 1.027	2300] chan	nels
	Exp Num	В	f	t (ns)
	1	834.6	100.0	4.188
Backo Shift	ground	: 0.138 : 0 ns		

v Discrete Components Analysis (Tail fitting)

Fitting range c ²		: [150; : 1.039	2300] chan	nels
	Exp Num	В	f	t (ns)
	1	604.5	100.0	4.149
Backs Shift	ground	: 0.791 : 0 ns		

v Discrete Components Analysis (Tail fitting)

Fitting range c ²		: [150; : 1.039	2300] chan	nels
	Exp Num	В	f	t (ns)
	1	604.5	100.0	4.149
Backg Shift	ground	: 0.791 : 0 ns		

c ²		: 1.032		
	Exp Num	В	f	t (ns)
	1	562.8	100.0	3.670
Background Shift		: 0.669 : 0 ns	9	

Background

Shift

: 0.669

: 0 ns

v Discrete Components Analysis (Tail fitting)

Fitting range		: [150; 2200] channels			
c ²		: 1.013			
	Exp Num	В	f	t (ns)	
	1	848.4	100.0	4.388	
Background : Shift :		: 0.206 : 0 ns			

Fitting range χ^2	: [100; 1024] channels : 1.201			
	Βį	fi	t _i (ns)	
1	88.5537	0.921	0.810	
2	1855.0070	99.079	4.161	
Shift	: 0 ns			
Decay Background : 5.529				

* Exponential Components Analysis (Tail Fitting) Fitting range : [100; 1024] channels : 1.216 χ^2 Βį fi ţ_i (ns) 1447.8010 64.865 1.525 1 286.7444 35.135 4.171 2 Shift : 0 ns

Decay Background: 4.396

			-	
	1	807.2	100.0	
Back	ground	: 0.210)	
Shift		: 0 ns		