Supporting Information

DMSO containing ruthenium(II) hydrazone complexes: *In vitro* evaluation of biomolecular interaction and anticancer activity

M. Alagesan^a, P. Sathyadevi^a, P. Krishnamoorthy^a, N.S.P. Bhuvanesh^b, N. Dharmaraj^{a,*}

^{*a*}Inorganic & Nanomaterials Research Laboratory, Department of Chemistry, Bharathiar University, Coimbatore – 641 046, India. E-mail: dharmaraj@buc.edu.in; Tel.: +91 422 2428319; Fax: +91 422 2422387.

^bDepartment of Chemistry, Texas A&M University, College Station, TX 77843, U.S.A.

†Electronic supplementary information (ESI) available:

CCDC reference numbers 838986 and 852727 for complex 2 and 4. For ESI and crystallographic data in CIF or other electronic format see DOI:

Figure S1 Packing diagrams of complexes 1 and 4 showing inter-molecular hydrogen bonding.

Figure S2 UV-visible absorption spectra of complexes 1, 2, 3 and 4 in aqueous PBS buffer at pH 7.4.

Figure S3 Electronic absorption spectra of BSA (10 μ M), with ligands and complexes and Scatchard plots of the fluorescence titration of the complexes with BSA.

Figure S4 Synchronous spectra of BSA (1 μ M) in the presence of increasing amounts of the complexes 1, 2, 3 and 4 (0-14 μ M) at a wavelength difference of $\Delta \lambda = 15$ nm. Arrow indicates the decrease of emission intensity as a function of increasing concentration of the compounds.

Figure S5 Synchronous spectra of BSA (1 μ M) in the presence of increasing amounts of the complexes 1, 2, 3 and 4 (0-14 μ M) at a wavelength difference of $\Delta \lambda = 60$ nm. Arrow indicates the decrease of emission intensity as a function of increasing concentration of the compounds.

	Complex 1	Complex 4
$\operatorname{Ru}(1) - \operatorname{S}(2)$	2.236(10)	2.2368(8)
$\operatorname{Ru}(1) - \operatorname{Cl}(2)$	2.370(10)	2.4124(8)
Ru(1) - Cl(1)	2.401(11)	2.3703(8)
Ru(1) - O(1)	2.086 (2)	2.103(2)
Ru(1) - S(1)	2.250 (10)	
Ru(1) - S(3)		2.2467(8)
O(1)-Ru(1)-S(2)	175.94(8)	175.83(6)
O(1)-Ru(1)-Cl(2)	87.75(8)	88.14(6)
S(2)-Ru(1)-Cl(2)	91.49(4)	92.22(3)
O(1)-Ru(1)-Cl(1)	87.96(8)	87.79(6)
S(2)-Ru(1)-Cl(1)	92.48(4)	91.57(3)
Cl(2)- $Ru(1)$ - $Cl(1)$	173.98(4)	174.43(3)
N(1)-Ru(1)-S(2)	99.32(8)	99.10(7)
N(1)-Ru(1)-Cl(1)	89.30(8)	84.75(7)
O(1)-Ru(1)-N(1)	76.66(1)	
O(1)-Ru(1)-S(1)	90.89(7)	
N(1)-Ru(1)-S(1)	167.53(8)	
S(2)-Ru(1)-S(1)	93.14(4)	
N(1)-Ru(1)-Cl(2)	85.60(8)	
S(1)-Ru(1)-Cl(2)	94.45(4)	
S(1)-Ru(1)-Cl(1)	89.85(4)	
S(2)-Ru(1)-S(3)		92.93(3)
O(1)-Ru(1)-N(1)		76.74(9)
O(1)-Ru(1)-S(3)		91.23(6)
N(1)-Ru(1)-S(3)		167.95(7)
S(3)-Ru(1)-Cl(1)		94.28(3)
N(1)-Ru(1)-Cl(2)		90.61(7)
S(3)-Ru(1)-Cl(2)		89.62(3)
	-	

Table S1 Selected bond lengths (Å) and angles (°) for the complex 1 and 4 $\,$

Table S2 Results of interaction study of compounds 1-4 with DNA

Compounds	Absorption wavelength (nm) (absence of DNA)	Shift of wavelength (nm) (presence of DNA)	Nature of shift	Change in intensity
1	262	1	Red	26.57 (hyper)
	318	1	Red	8.69 (hypo)
	378	-	-	10.87 (hypo)
2	263	-	-	34.14 (hyper)
	331	1	Red	8.38 (hypo)
	383	-	-	11.72 (hypo)

	419 447	-	-	9.86 (hypo) 6.73 (hypo)
3	320	-	-	13.28 (hypo)
	332	2	Red	11.79 (hypo)
	372	-	-	13.51 (hypo)
	451		-	10.40 (hypo)
4	259	-	-	25.44 (hyper)
	330	-	-	10.05 (hypo)
	379	-	-	10.95 (hypo)
	446	-	-	7.38 (hypo)

Table S3 Results of interaction study of compounds 1-4 with EB-DNA

	EB expt @ 605 nm	DNA binding	
Complex	% hypochromism	K _q (M ⁻¹)	K _{app} (M ⁻¹)
1	13.58	1.4758×10 ³	7.4210×10 ⁴
2	47.81	9.0270×10 ³	4.5165×10 ⁵
3	18.54	2.2401×10 ³	1.1199×10 ⁵
4	31.81	4.4309×10 ³	2.2948×10 ⁵

Table S4 Comparison of data related to interaction between compounds 1-4 and protein

Complex	Prote	in binding exp	eriment	Binding constants		Binding sites
	Emission @345nm, (%hypo)	S15@303 (%hypo)	S60@342 (%hypo)	K _{sv} (×10 ⁵ M ⁻¹)	K (×10 ⁵ M ⁻¹)	n
1	38.27	14.12	36.14	4.287	0.5556	0.8835
2	42.76	21.29	46.08	4.823	2.0219	0.9465
3	40.98	16.54	36.40	4.512	1.4995	0.9191
4	41.25	20.38	40.54	4.800	1.8975	0.9406