Supplementary Information

One-pot hydrothermal synthesis of mesoporous Zn_xCd_{1-x}S/

Reduced graphene oxide hybrid material and its enhanced

photocatalytic activity

Xinwei Wang ^{a, b}, Hongwei Tian ^a, Xiaoqiang Cui ^a, Weitao Zheng^{a*}, Yichun Liu ^c a Department of Materials Science, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China b School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China c Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China *Corresponding author. Tel/Fax: 86-431-85168246; E-mail address: wtzheng@jlu.edu.cn (Weitao Zheng).

Fig. S1. The EDX spectrum for $Z_{4.0}CSG$.

Fig. S2. TGA curves for pure RGO, pure $Z_{0.4}$ CS, and $Z_{0.4}$ CSG hybrid materials.

The thermo-gravimetric analyses (TGA) have been carried out to determine the Z_xCS and RGO content in Z_xCSG hybrid materials [1]. The weight loss for pure RGO, pure $Z_{0.4}CS$ NPs and $Z_{0.4}CSG$ hybrid material as the representative samples are analysed, as shown in Fig. S2. When the temperature is lower than 300 °C, the weight losses mainly come from the absorbed water and oxygenated function groups (such as -COOH, -OH) for pure RGO, and the absorbed water for $Z_{0.4}CS$. The weight losses for pure RGO and pure $Z_{0.4}CS$ are mainly caused by the oxygenolysis from 300 to 800 °C, which are the 30.2 wt % and 4.0 wt %, respectively [2, 3]. The weight loss for

 $Z_{0.4}$ CSG hybrid material is about 14.1 wt% from 300 to 800 °C. Therefore, the weight ratio of the RGO in $Z_{0.4}$ CSG is estimated according to the correlation of the weight loss from $Z_{0.4}$ CS NPs and $Z_{0.4}$ CSG between 300-800 °C. The estimated RGO content in $Z_{0.4}$ CSG by TGA is about 10.1 wt%, and the residual weight of 89.9 % should be the weight of $Z_{0.4}$ CS NPs. The Z_x CS and RGO content in other samples are also estimated in the same way, and the results are shown in Table 2.

Fig. S3. UV-vis diffuse reflectance spectra of $Z_{0.4}CS$ NPs and $Z_{0.4}CSG$

Fig. S4. Comparison of degradation efficiencies for Z_xCS NPs and Z_xCSG under

VL irradiation

Sample	Z _x CS	RGO	weight ratio for Z _x CS and RGO
Z ₀ CSG	88.7	11.3	7.8:1
Z _{0.2} CSG	89.5	10.5	8.5:1
Z _{0.4} CSG	89.9	10.1	8.9:1
Z _{0.6} CSG	89.3	10.7	8.3:1
Z _{0.8} CSG	89.4	10.6	8.4:1
Z _{1.0} CSG	90.2	9.8	9.2:1

Table 2. The RGO and Z_x CS content in Z_x CSG hybrid materials (wt %)

Table 3. The inorganic ions concentration in the MB degradation solution for Z_x CSG catalysts after 120 min irradiation. (mM/L)

Catalyst	SO4 ²⁻	NO ₃ -	$\mathrm{NH_4^+}$	
Z ₀ CSG	-	-	-	
Z _{0.2} CSG	0.038	0.043	0.013	
Z _{0.4} CSG	0.063	0.051	0.022	
Z _{0.6} CSG	0.042	0.027	-	
Z _{0.8} CSG	0.008	-	-	
Z _{1.0} CSG	-	-	-	

The SO₄²⁻, NO₃⁻, NH₄⁺concentration in the degradation solution for MB after 120 min irradiation are determined by ion chromatography. The previous reports have shown that SO₄²⁻ is one of the main products for MB mineralization, and it is widely used to evaluate the efficiency of the catalytic degradation of MB [4, 5]. The formation of SO₄²⁻ is ascribed to that heteroatom S from the degradated MB molecule undergoes a direct oxidation from the oxidation degree -2 to the highest final stable +6 after visible light irradiation for 120 minutes. Meanwhile, nitrogen atoms in the -3 oxidation state produce NH₄⁺ cations that subsequently are oxidized into NO₃⁻ ions [6,

References

[1] C. Xu, X. Wang, J. W. Zhu, X.J. Yang, L. D. Lu, J. Mater. Chem., 2008, 18, 5625-5629.

[2] J. F. Shen, B. Yan, M. Shi, H. W. Ma, N. Li, M. X. Ye, *J. Mater. Chem.*, 2011, 21, 3415-3421.

[3] M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Matinez-Alonso, J. M. D. Tascon, *J. Phys. Chem. C.*, 2010, 114 6426-6432.

[4] J. W. Tang, Z. G. Zou, J. H. Ye., Chem Mater., 2004, 16, 1644-1649.

[5] J.Y. Qu, L. Shi, C. X. He, F. Gao, B. B. Li, Q. Zhou, H. Hu, G. H. Shao, X. Z.

Wang, J. S. Qiu, Carbon., 2014, 66, 485-492.

[6] L. L. Zhang, Y. L. Nie, C. Hu, X. X. Hu, J. Hazard. Mater., 2011, 190, 780-785.

[7] H. Ammar, L. Hinda, K. Mohamed, E. Elimame, G. Chantal, H. Jean-Marie, *Appl. Catal: Environ.*, 2001, **31**, 145-157.