Electronic Supporting Information

Synthesis and Electronic Structure of the first cyaphide-alkynyl complexes.

Nicola Trathen, Matthew C. Leech, Ian R. Crossley*, Victoria K. Greenacre, S. Mark Roe

General Experimental Details	2
Synthetic Procedures	2
Crystallography	5
Computational Details	5
Figure S1: Ellipsoid plot of compound 3	6
Table S1: Atomic coordinates for optimized geometry of 7	7
Table S2: Atomic coordinates for optimized geometry of 8	8
Figure S2: Optimised Geometry of 7	9
Figure S3: Optimised Geometry of 8	9
Figure S4: Selected MOs for 7	10
Figure S5: Selected MOs for 8	11
Table S3: Orbital Compositions for 7	12
Table S4: Orbital Compositions for 8	13
Table S5: First 100 excited states for 7	14
Figure S6: Simulated UV/Vis for 7	17
Figure S7: Experimental UV/Vis for 7	17
Table S6: First 100 excited states for 8	18
Figure S8: Simulated UV/Vis for 8	21
Figure S9: Experimental UV/Vis for 8	21
References	22

General Experimental details.

All manipulations were performed under inert atmospheres (N₂ or Argon) using standard Schlenkline and glove-box techniques. Solvents were dried by refluxing over molten alkali metals (hydrocarbons) or CaH₂ (chlorinated) and stored over potassium mirrors or 4 Å molecular sieves (CH₂Cl₂, CHCl₃, THF) in ampoules under argon. Reagents were obtained from standard commercial vendors; Me₃SiC=P⁵¹ and [Ru(dppe)₂Cl(C=CC₆H₄OMe)] (**4**)⁵² were prepared by literature methods. NMR spectra were recorded on a VNMRS 400 MHz spectrometer: ¹H 399.5, ¹³C 100.46, ²⁹Si 79.37, ³¹P 161.71 MHz, reference to external Me₄Si, (¹H, ¹³C, ²⁹Si) and 85 % H₃PO₄ (³¹P) respectively. Carbon spectra were assigned with recourse to the 2D (HSQC, HMBC) spectra. UV/Vis spectra were recorded on a Thermo Spectronic UV300 instrument, IR spectra were recorded on a Perkin Elmer Spectrum One instrument. Raman spectra were recorded by Dr A. K. Brisdon, University of Manchester on a Nicolet Nexus FTIR/Raman. Mass spectra were recorded by Dr A. A. Sada of the departmental service and elemental analyses were obtained by Mr S. Boyer, London Metropolitan University Analytical Service.

Synthetic Procedures

$[RuCl(dppe)_2(C \equiv CCO_2Me)] (3)$

HCCCO₂Me (0.126 cm³, 1.40 mmol) was added to a stirring solution of [RuCl(dppe)₂][OTf] (0.760 g, 0.703 mmol) in DCM (10 cm³) at ambient temperature. The solution was stirred for 16 h. then the solvent volume reduced to approx. 5 cm³ under reduced pressure, with subsequent addition of a solution of KO^tBu (0.157 g, 1.40 mmol) in anal. grade MeOH (10 cm³) at ambient temperature. A yellow/pink solution, with gradual formation of precipitate, was observed. After 1 h. the mixture was filtered and the pale yellow solid washed with anal. grade MeOH (3 x 5 mL), then dried *in vacuo*. Yield: 0.365 g, 0.360 mmol, 63%. Anal. Found: C, 65.96%; H, 4.95%. Calcd for C₅₆H₅₁P₄O₂ClRu: C, 66.17%; H, 5.02%. ν_{max}/cm⁻¹ 2032 (CC). ¹H-NMR (CDCl₃, 30 °C, 399.5 MHz): δ_H 7.39-7.31 (16 H, m (br), C₆H₅), 7.23-7.19 (8 H, m (br), C₆H₅), 7.04-6.99 (16 H, m (br), C₆H₅), 3.51 (3 H, s, 0CH₃), 2.69 (8 H, m, C₂H₄). ¹³C{¹H}-NMR (CDCl₃, 30 °C, 150.81 MHz): δ_c 152.84 (s, *c*=O), 143.15 (s (br), Ru-*C*≡C), 135.79 (m, ipso-*C*₆H₅), 127.53 (m (br), *C*₆H₅), 107.17 (s (br), *R*₀-C≡*C*), 51.25 (s, 0*C*H₃), 30.91 (quint. (¹J_{CP} = 11.79 Hz), *C*₂H₄). ³¹P{¹H}-NMR (CDCl₃, 30 °C, 161.73 MHz): δ_p 48.09.

$[Ru(dppe)_2(CCCO_2 Me)(P \equiv C(SiMe_3))][OTf] (5.0Tf)$

[RuCl(dppe)₂(CCCO₂Me)] (0.300 g, 0.295 mmol) and AgOTf (0.076 g, 0.295 mmol) were dissolved in DCM (5 cm³) at ambient temperature with continual stirring, yielding a light purple suspension. The mixture was stirred for 10 min. before addition of TMSCP (6.80 cm³, 0.043 M in toluene). The suspension was stirred for 1 h. and then filtered yielding an orange/red solution. Solvent was removed under reduced pressure, then the resulting mixture re-extracted with DCM, filtered and taken to dryness under reduced pressure to afford a copper coloured, powder. Yield: 0.224 g, 61%. v_{max}/cm⁻¹ 1265 (CP), 2098 (CC). Anal. Found: C, 58.59%; H, 4.75%. Calcd for C₆₁H₆₀P₅O₅F₃SiSRu: C, 58.79%; H, 4.82%. ¹H-NMR (CDCl₃, 30 °C, 399.5 MHz): δ_H 7.40 (12 H, m, C₆H₅), 7.33 (4 H, m, C₆H₅), 7.19 (8 H, m, C₆H₅), 7.10 (16 H, m, C₆H₅), 3.65 (3 H, s, CH₃), 2.82 (8 H, m, C₂H₄), -0.12 (9 H, s, Si(CH₃)₃). ¹³C{¹H}-NMR (CDCl₃, 30 °C, 150.81 MHz): δ_{C} 192.59 (d (¹J_{C-P} = 89.93 Hz), $C \equiv P$, 152.72 (s, C = 0), 133.71 (m (br), C_6H_5), 132.90 (m (br), C_6H_5), 132.20 (dquint. [] = 209.41, 11.55 Hz), C_6H_5), 131.05 (d (J = 29.39 Hz), C_6H_5), 128.54 (m (br), C_6H_5), 128.31 (m (br), C_6H_5), 120.81 (m (br) Ru-C=C), 108.77 (d (br) (${}^{3}J_{CP}$ = 24.43 Hz), Ru-C=C), 51.70 (s, CH₃), 29.87 (quint. $({}^{2}J_{CP} = 11.84 \text{ Hz})$, $C_{2}H_{4}$), 0.33 (s, Si(CH_{3})₃). ${}^{31}P{}^{1}H$ }-NMR (CDCl₃, 30 °C, 161.73 MHz): δ_{P} 108.43 (quint. (${}^{2}J_{PP}$ = 35.02 Hz), *P*=C), 41.19 (d (${}^{2}J_{PP}$ = 35.02 Hz), *P*Ph₂). ${}^{29}Si{}^{1}H$ NMR (CDCl₃, 298 K) δ_{Si} : -12.33.

$[Ru(dppe)_2(CCC_6H_4OMe)(P \equiv C(SiMe_3))][OTf] (6.0Tf)$

[RuCl(dppe)₂(CCC₆H₄OMe)] (0.210 g, 0.198 mmol) and AgOTf (0.051 g, 0.198 mmol) were dissolved in DCM (5 cm³) at ambient temperature with continual stirring, yielding a turquoise suspension. The mixture was stirred for 10 min. before addition of TMSCP (3.75 cm³, 0.053 M in toluene). The suspension was stirred for 1 h. and then filtered yielding a green/brown solution. Solvent was removed under reduced pressure, then the resulting mixture re-extracted with DCM, filtered and taken to dryness under reduced pressure to afford a copper coloured, powder. Yield: 0.236 g, 92%. Anal. Found: C, 61.00%; H, 4.94%. Calcd for C₆₆H₆₄P₅O₄F₃SiSRu: C, 61.25%; H, 4.98%. ν_{max}/cm⁻¹ 1265 (CP), 2040 (CC). ¹H-NMR (CDCl₃, 30 °C, 399.5 MHz): δ_H 7.67 (8 H, s(br), C_6H_5), 7.40 – 7.31 (8 H, m, C_6H_5), 7.18 – 7.05 (24 H, m, C_6H_5), 6.77 (4 H, m, p- C_6H_4), 3.83 (3 H, s, OCH₃), 2.84 (8 H, m, C_2H_4), -0.12 (9 H, s, Si(CH₃)₃). ¹³C{¹H}-NMR (CDCl₃, 30 °C, 150.81 MHz): δ_{C} 188.2 (d, (¹J_{CP} = 88.67), $C \equiv P$), 158.2 (s (br), $C_{6}H_{4}$), 133.6 (dquint. (J = 176.8, 11.10 Hz), *ipso-C*₆H₅), 133.5 (dquint. (J = 127.1, 2.3 Hz), C_6H_5), 131.2 (quintet, (J = 1.4 Hz), C_6H_4), 130.9 (s (br), C_6H_5), 128.4 (dquint. (J = 17.3, 2.3 Hz), C_6H_5), 119.6 (m (br), *ipso*- C_6H_4), 115.9 (d (br) (³J_{PP} = 23.0), Ru-C \equiv C), 113.4 (s (br) C₆H₄) 104.7 (d (br) (²J_{CP} = 83.6 Hz), Ru-C \equiv C), 55.4 (s, 0CH₃), 30.8 (quint. $({}^{2}J_{CP} = 11.6 \text{ Hz})$, $C_{2}H_{4}$), 0.51 (d, $({}^{2}J_{CP} = 11.6 \text{ Hz})$, Si(CH₃)₃). ${}^{31}P{}^{1}H$ -NMR (CDCl₃, 30 °C, 161.73 MHz): δ_P 113.14 (quint. (²J_{PP} = 33.62Hz), $P \equiv C$), 41.18 (d (²J_{PP} = 33.62 Hz), PPh₂). ²⁹Si{¹H} NMR (CDCl₃, 298 K)δ_{Si}: -13.28.

$Ru(dppe)_2(CCCO_2Me)(C\equiv P)$ (7)

[Ru(dppe)₂(TMSC=P)(CCCO₂Me)][OTf] (0.190 g, 0.153 mmol) and KOⁱBu (0.017 g, 0.153 mmol) were dissolved in THF (5 cm³) at ambient temperature with continual stirring. The solution was stirred for 1 h. before removal of solvent under reduced pressure, and the residue extracted with CH₂Cl₂. After filtration, the solvent was removed under reduced pressure to afford a beige solid. Yield: 0.094 g, 60 %. Anal. Found: C, 66.70%; H, 4.78%. Calcd for C₅₇H₅₁P₅O₂Ru: C, 66.86%; H, 5.02%. v_{max}/cm^{-1} 1253 (CP), 2036 (CC). ¹H-NMR (CDCl₃, 30 °C, 399.5 MHz): δ_{H} 7.63 (6 H, m (br), C₆H₅), 7.38 (6 H, m (br), C₆H₅), 7.29 (6 H, t (J_{HH} = 7.51 Hz), C₆H₅), 7.22 (6 H, t (J_{HH} = 7.51 Hz), C₆H₅), 7.10 (8 H, t (J_{HH} = 7.51 Hz), C₆H₅), 7.01 (8 H, t (J_{HH} = 7.51 Hz), C₆H₅), 7.10 (8 H, t (J_{HH} = 7.51 Hz), C₆H₅), 7.01 (8 H, t (J_{HH} = 7.51 Hz), C₆H₅), 3.53 (3 H, s, CH₃), 2.86 (4 H, m (br), C₂H₄), 2.67 (4 H, m (br), C₂H₄). ¹³C{¹H}-NMR (CDCl₃, 30 °C, 150.81 MHz): δ_{C} 279.12 (m (br), *C*=P), 152.96 (s, *C*=O), 143.78 (m (br), Ru-*C*=C), 136.46 (m (br), *C*₆H₅), 134.69 (m (br), *C*₆H₅), 135.07 (d (J = 36.98 Hz), *C*₆H₅), 127.74 (m (br), *C*₆H₅), 127.48 (m (br), *C*₆H₅), 112.42 (s, Ru-C=C), 51.17 (s, OCH₃), 31.34 (quint. (J_{CP} = 11.95 Hz), *C*₂H₄). ³¹P{¹H</sup>}-NMR (CDCl₃, 30 °C, 161.73 MHz): δ_{P} 161.52 (s (br), *P*=C), 52.73 (d (J_{PP} = 3.81 Hz), *P*Ph₂).

$Ru(dppe)_2(C \equiv P)(CCC_6H_4OMe)$ (8)

[Ru(dppe)₂(TMSC≡P)(CCC₆H₄OMe)][OTf] (0.326 g, 0.252 mmol) and K0⁴Bu (0.029 g, 0.258 mmol) were dissolved in THF (5 cm³) at ambient temperature with continual stirring. The solution was stirred for 1 h. before removal of solvent under reduced pressure, and the residue extracted with CH₂Cl₂. After filtration, the solvent was removed under reduced pressure to afford a beige solid. Yield: 0.162 g, 60%. Anal. Found: C, 69.30%; H, 5.23%. Calcd for C₆₂H₅₅P₅ORu: C, 69.46%; H, 5.17%. ν_{max}/cm^{-1} 1261 (CP), 2032 (CC). ¹H-NMR (CD₂Cl₂, 30 °C, 399.5 MHz): $\delta_{\rm H}$ 7.57 (16 H, dm (J = 27 Hz), C₆H₅), 7.23 (8 H, dt (J = 30.1, 7.4 Hz), C₆H₅), 7.03 (16 H, dt (J = 43.6, 7.5 Hz), C₆H₅), 6.69 (4H, s,(br), C₆H₄), 3.77 (3 H, s OCH₃), 2.89 (8 H, m (br), C₂H₄), 2.65 (8 H, m (br), C₂H₄). ¹³C{¹H}-NMR (CD₂Cl₂, 30 °C, 150.81 MHz): $\delta_{\rm C}$ 281.9 (m (br), *C*₆H₅), 135.0 (m (br), *C*₆H₅) 131.4 (m (br), *C*₆H₄) 129.5 (d (J = 20 Hz), *C*₆H₅), 127.6 (m (br), *C*₆H₅), 127.4 (m (br), *C*₆H₅), 123.6 (s, Ru-C≡C), 119.0 (s, Ru-C≡C), 55.7 (s, CH₃), 31.7 (quint. (*J*_{CP} = 11.81 Hz), *C*₂H₄), (129.05 (d (J = 39.84 Hz), *C*₆H₅), 126.98 (dquint. (J = 27.25, 2.12 Hz), *C*₆H₅), 112.02, 59.13 (s, OCH₂), 30.72 14.50 (s, *C*H₃). ³¹P{¹H}-NMR (CDCl₃, 30 °C, 161.73 MHz): $\delta_{\rm P}$ 159.5 (m (br), *P*≡C), 50.8 (d (³*J*_{PP} = 3.4 Hz), *P*Ph₂).

Crystallography.

Diffraction data were obtained on either an Enraf Nonius Kappa CCD using Mo-K α radiation (λ = 0.71073), or an Agilent Excalibur with CCD plate detector using Cu-K α radiation (λ =1.54184) and solved using either SHELX-97^{S3} or Olex 2.0.^{S4}

Compound 3 (CCDC 962350): *Crystal Data*: $C_{56}H_{51}ClO_2P_4Ru$, $M_w = 1101.29$, monoclinic, *Cc* (no 9), a = 22.6782(6) Å, b = 13.3919(3) Å, c = 16.9067(4) Å, $\beta = 102.139(1)^\circ$. V = 5019.8(2) Å³. Z = 4. D_c 1.457 Mg m⁻³, μ (Mo-K α) = 0.643 mm⁻¹, T = 173(2) K, 11095 independent reflections, full-matrix F^2 refinement. $R_1 = 0.053$, $wR_2 = 0.1184$ on 8097 independent absorption corrected reflections [$I > 2\sigma(I)$; $2\theta_{max} = 55^\circ$], 606 parameters.

Compound 5.OTF (CCDC 962351): *Crystal Data*: $C_{60}H_{60}O_2P_5RuSi$, $M_w = 1246.16$, monoclinic, *Cc* (no 9), a = 27.1458(6) Å, b = 12.4837(3) Å, c = 18.8950(5) Å, $\beta = 102.193(2)^\circ$. V = 6258.7(3) Å³. Z = 4. D_c 1.322 Mg m⁻³, μ (Mo-K α) = 0.485 mm⁻¹, T = 173(2) K, 13387 independent reflections, full-matrix F^2 refinement. $R_1 = 0.077$, $wR_2 = 0.2030$ on 8097 independent absorption corrected reflections [$I > 2\sigma(I)$; $2\theta_{max} = 54^\circ$], 741 parameters.

Compound 8 (CCDC 990881): *Crystal Data*: $C_{62}H_{55}OP_5Ru$, $M_w = 1071.98$, triclinic, P -1 (no 2), a = 9.9951(7) Å, b = 11.9374(6) Å, c = 21.7684(13) Å, $\alpha = 85.981(5)$ °, $\beta = 86.336(5)$, ° $\gamma = 85.461(5)$ °. V = 2578.3(3) Å³. Z = 2. D_c 1.381 Mg m⁻³, μ (Cu-K α) = 4.252 mm⁻¹, T = 173 K, 9644 independent reflections, full-matrix F^2 refinement. $R_1 = 0.0458$ $wR_2 = 0.1365$ on 7915 independent absorption corrected reflections [$I > 2\sigma(I)$; $2\theta_{max} = 143.6^{\circ}$], 642 parameters.

Computational Details. Calculations were performed using Gaussian 09W, Revision C.01,^{S5} running on either an Intel Core 2 Quad Q9550 or Intel Core i5-2500 (quad, 3.3 GHz), equipped with 4 GB RAM, results were visualised using GaussView 5.0; orbital contributions and UV/Vis spectra were calculated using GaussSum2.2.^{S6} Geometries were optimised with the hybrid density functional B3LYP, using the RECP basis set Lanl2dz for Ru and 6-31G** for all other atoms. Minima were characterised by frequency calculations, and calculated frequencies adjusted by standard scaling factors. Excited states were calculated using TD-DFT with the B3LYP functional and 3-21G* basis set on all atoms; no solvent model was used.

Figure S1: Molecular structure of **3** with hydrogen atoms omitted and phenyl rings reduced for clarity; 50 % thermal ellipsoids. Selected Bond distances (Å) and angles (deg.).: Ru(1)-Cl(1) 2.550(2), Ru(1)-C(5) 1.875(7), C(5)-C(6) 1.136(10), C(6)-C(7) 1.541(8), C(5)-Ru(1)-Cl(1) 177.8(2), C(6)-C(5)-Ru(1) 175.8(6), C(5)-C(6)-C(7) 165.6(7)

	Х	Y	Z		Х	Y	Z		Х	Y	Z		Х	Y	Z
Ru	-0.02811	0.111538	-0.10181	н	1.296441	1.780416	3.735027	С	1.955298	5.252152	0.149798	н	1.154357	-3.40961	-0.33558
С	-0.15132	1.68234	-1.41253	С	-2.28334	2.718809	1.319624	н	0.376991	3.872847	0.58605	С	4.274159	-4.58371	-0.93448
С	0.215487	-1.48554	1.212843	С	-2.83151	3.108219	0.087796	С	3.331515	5.445477	0.023631	н	5.805877	-3.53023	-2.02907
С	0.407009	-2.43896	1.979628	С	-2.30591	3.637821	2.383292	н	5.273544	4.520518	0.176701	н	2.53696	-5.35951	0.103257
С	0.579792	-3.74512	2.541463	С	-3.39213	4.376024	-0.07338	н	1.266853	6.065982	-0.05773	н	4.895214	-5.45355	-0.73878
0	0.967252	-3.85239	3.84341	н	-2.81085	2.42507	-0.75011	н	3.723084	6.415084	-0.27079	С	-3.30305	-0.00927	-1.94016
С	1.193222	-2.66024	4.598577	С	-2.8551	4.910366	2.216771	С	3.042942	0.46124	2.090353	С	-3.40048	0.951475	-2.96025
Н	1.946663	-2.02278	4.127224	н	-1.90533	3.370041	3.354974	С	3.767465	1.075836	3.129598	С	-4.4464	-0.29211	-1.17308
н	0.267171	-2.08958	4.727692	С	-3.40212	5.281978	0.987358	С	3.449777	-0.80408	1.653947	С	-4.60908	1.607689	-3.20535
Н	1.550723	-2.99426	5.574507	н	-3.80934	4.654225	-1.03648	С	4.862003	0.438393	3.711187	н	-2.53415	1.209205	-3.55614
0	0.400218	-4.77972	1.912171	н	-2.85927	5.606755	3.050638	н	3.493635	2.068375	3.474756	С	-5.65004	0.369201	-1.41714
Ρ	-0.19167	2.865294	-2.46442	н	-3.83132	6.271622	0.85824	С	4.551111	-1.44332	2.232773	н	-4.40324	-1.03936	-0.38843
Ρ	1.53347	-0.88433	-1.76886	С	-3.13095	0.056642	2.017443	н	2.892949	-1.30865	0.878403	С	-5.73605	1.321125	-2.43457
Ρ	-1.71789	-0.89313	-1.57755	С	-4.35685	0.694941	2.264931	С	5.257541	-0.82552	3.263004	н	-4.66373	2.344241	-4.00203
С	0.456611	-1.69174	-3.07109	С	-3.0463	-1.33373	2.200284	н	5.408698	0.930344	4.510885	н	-6.51951	0.135883	-0.80963
Н	1.00866	-1.77178	-4.01223	С	-5.46811	-0.03917	2.684224	н	4.842481	-2.42622	1.874991	Н	-6.67494	1.832694	-2.6271
Η	0.292936	-2.71456	-2.71825	н	-4.45294	1.765215	2.125587	н	6.11068	-1.32201	3.716753	С	-2.32318	-2.64645	-1.44884
С	-0.88144	-0.97544	-3.24479	С	-4.15919	-2.06384	2.620267	С	2.620751	0.271695	-2.71031	С	-3.28173	-3.12917	-2.36056
Н	-1.52302	-1.5044	-3.95652	Н	-2.10992	-1.84519	2.013234	С	3.692705	0.880471	-2.03974	С	-1.78023	-3.53683	-0.51525
Н	-0.73044	0.050273	-3.58841	С	-5.37446	-1.42004	2.861573	С	2.417752	0.581082	-4.06192	С	-3.67983	-4.46414	-2.3307
Ρ	1.581456	1.313753	1.324549	Н	-6.40832	0.473064	2.869396	С	4.547313	1.758238	-2.70459	н	-3.72733	-2.45901	-3.08962
Ρ	-1.62012	1.000792	1.49548	н	-4.07304	-3.13864	2.751571	н	3.873081	0.655414	-0.99344	С	-2.17713	-4.87775	-0.48729
С	-0.64726	1.066678	3.080888	Н	-6.24089	-1.99017	3.184971	С	3.268372	1.466176	-4.7267	н	-1.04661	-3.19179	0.199835
Н	-1.24579	1.473449	3.902252	С	2.316267	2.935292	0.799729	н	1.58799	0.149836	-4.60986	С	-3.12775	-5.34329	-1.39308
Η	-0.42162	0.023474	3.315382	С	3.696935	3.137909	0.655541	С	4.336981	2.054993	-4.05218	н	-4.42224	-4.81883	-3.04055
С	0.636827	1.867245	2.868096	С	1.451019	4.007642	0.525475	н	5.370847	2.217102	-2.16592	н	-1.72493	-5.53721	0.247084
Н	0.408611	2.927873	2.738462	С	4.199907	4.38314	0.272704	н	3.08815	1.69795	-5.77246	Н	-3.43947	-6.38408	-1.37463

	Х	Y	Z		Х	Y	Z		Х	Y	Z	Х	Y	Z
Ru	0.658062	0.021785	0.130579	н	2.061743	1.69308	-4.37222	С	-0.51008	-2.86452	-1.95331	C 0.596941	-0.55127	-3.33124
Ρ	0.63094	1.59672	1.994087	С	3.272699	-2.84495	-1.21477	С	2.944846	3.227984	2.340862	H 1.609237	-0.42969	-3.72593
Ρ	0.795373	-1.56008	-1.74927	н	3.186414	-2.42865	-0.22129	н	3.45275	2.337051	2.687065	H 0.025705	-1.12953	-4.06355
Ρ	0.743399	1.678214	-1.64377	С	-2.03533	-2.82488	1.365516	С	-0.04634	0.815615	-3.09348	O -8.14624	0.136121	-1.61248
Ρ	0.481238	-1.62552	1.950288	н	-1.93064	-2.38969	0.381444	н	-1.09382	0.710694	-2.80187	C -5.87747	0.827425	-2.24127
Ρ	4.252485	0.161885	0.630797	С	-0.8653	3.136092	3.863683	н	-0.00768	1.439406	-3.99252	H -6.21078	1.383903	-3.10986
С	3.252715	2.914449	-1.42595	н	0.067951	3.648641	4.074135	С	0.707783	-0.68205	3.56962	C 4.378148	-3.636	-1.54304
Н	3.003588	3.006665	-0.37679	С	2.438692	-3.09634	-3.46759	Н	-0.29987	-0.50177	3.956113	H 5.128877	-3.83894	-0.78528
С	-3.16064	-3.60002	1.666955	н	1.679195	-2.91563	-4.22236	н	1.230946	-1.31457	4.292517	C 3.963954	-3.75453	2.711564
Н	-3.90368	-3.77764	0.895213	С	-2.00683	3.477362	4.586871	С	-4.96462	-0.58388	-0.01312	H 4.953204	-3.53404	3.102401
С	4.463112	3.430282	-1.8874	н	-1.94778	4.24521	5.353479	н	-4.61466	-1.13654	0.852949	C 4.518656	-4.15019	-2.83012
Н	5.134833	3.918396	-1.18759	С	2.294256	-2.56268	-2.17315	С	-2.23784	4.45674	-0.88561	H 5.380653	-4.76086	-3.08461
С	-2.13884	1.50477	2.616581	С	0.197641	4.418427	-2.24076	н	-3.18555	4.461015	-0.35458	C -6.79144	0.161128	-1.41751
Н	-2.19886	0.751165	1.83997	н	1.144907	4.422509	-2.76765	С	3.046137	5.58711	1.799381	C -1.22867	-3.14483	3.619041
С	-1.41817	0.014299	-0.25043	С	-6.32118	-0.54405	-0.29948	н	3.604634	6.517298	1.743571	H -0.47312	-2.999	4.384797
С	1.735165	-2.98459	2.110718	н	-7.04335	-1.05396	0.330733	С	1.707836	5.54535	1.403798	C -3.32655	-4.13701	2.942364
С	2.683525	0.070992	0.412598	С	3.021784	-2.72873	2.611336	н	1.216607	6.440795	1.034542	H -4.2033	-4.73522	3.174966
С	-2.61967	0.038295	-0.53218	н	3.304961	-1.72613	2.907234	С	-1.78458	-2.54678	-2.44916	C 3.543912	-3.87852	-3.79487
С	-1.05727	-2.58756	2.338044	С	4.816719	3.304714	-3.23154	н	-2.02758	-1.52664	-2.719	H 3.641605	-4.28043	-4.79962
С	2.362725	2.277354	-2.30525	н	5.764622	3.698394	-3.58754	С	3.659976	4.426125	2.269614	C -2.49138	-4.85085	-2.21325
С	-1.47026	3.290416	-0.9059	С	1.420887	-4.29384	1.710325	н	4.700342	4.444815	2.581708	H -3.25459	-5.61708	-2.31662
Н	-1.82515	2.400539	-0.39912	н	0.429132	-4.52062	1.334366	С	3.945696	2.66766	-4.1151	C 2.365648	-5.31618	1.805943
С	-0.24114	3.256325	-1.58537	С	-0.57092	5.583945	-2.21424	н	4.207978	2.56511	-5.16442	H 2.100188	-6.32281	1.494913
С	-0.91801	2.147245	2.863331	н	-0.21128	6.473463	-2.72435	С	-0.24545	-4.19582	-1.59253	C 3.640577	-5.05054	2.308438
С	-3.28295	1.851305	3.342675	С	-4.01702	0.078621	-0.83016	н	0.736515	-4.47103	-1.22315	H 4.374343	-5.84766	2.388356
Н	-4.22177	1.349068	3.127224	С	1.438601	0.646852	3.380915	С	-3.22139	2.836631	4.326376	C -2.35602	-3.90583	3.921105
С	-1.79001	5.608312	-1.53573	н	2.475457	0.478341	3.083535	н	-4.11153	3.10686	4.887892	H -2.47267	-4.32432	4.916958
Н	-2.38621	6.516519	-1.51464	н	1.41922	1.238218	4.302276	С	-1.22806	-5.17883	-1.71889	C -8.67158	0.835512	-2.72643
С	-4.51391	0.782081	-1.94452	С	1.597948	3.173595	1.945539	н	-1.00082	-6.20354	-1.43801	H -9.7525	0.68698	-2.6962
н	-3.81657	1.312684	-2.586	С	0.990095	4.351857	1.477435	С	-2.76514	-3.53219	-2.57967	H -8.28138	0.443054	-3.6751

C 2.726289 2.164029 -3.6566 **H** -0.051 4.343878 1.175204 **H** -3.74423 -3.26288 -2.96527 **H** -8.455 1.910789 -2.67192

Figure S2: Optimised geometry of **7**. Selected geometric parammeters (Å, °). Ru(1)-C(2) 2.04953, Ru(1)-C(3) 2.08286, C(3)-C(4) 1.23841, C(4)-C(5) 1.43232, C(5)-O(6) 1.36261, C(5)-O(11) 1.22420, C(2)-P(12) 1.58350. Ru(1)-C(2)-P(12)177.32006, Ru(1)-C(3)-C(4) 177.72607, C(3)-C(4)-C(5) 164.49122. ν_{CP} 1238 cm⁻¹

Figure S3: Optimised geometry of **8**. Selected geometric parammeters (Å, °). Ru(1)-C(17) 2.04559, Ru(1)-C(15) 2.11091, C(15)-C(18) 1.23433, C(18)-C(55) 1.42033, C(17)-P(6) 1.58667. Ru(1)-C(17)-P(6)178.09434, Ru(1)-C(15)-C(18) 176.90735, C(15)-C(18)-C(55) 178.73669. ν_{CP} 1224 cm⁻¹

HOMO-3

HOMO-4

HOMO-6

LUMO+10

LUMO+18

LUMO+19

LUMO+20

Figure S4. Selected molecular orbitals for 7

Figure S5. Selected molecular orbitals for 8.

Table S3. Composition of selected molecular orbitals for 7.

Orbital	Energy / eV	% Ru	%C≡P	%C≡C	%C=0	%OMe	%dppe1	%dppe2
L+20	0.99	32	3	9	0	0	32	24
L+19	0.82	7	70	2	5	1	4	12
L+18	0.46	7	49	4	1	0	20	18
L+17	0.4	13	21	1	1	0	28	35
L+16	0.25	1	0	0	0	0	8	90
L+15	0.2	2	2	0	0	0	48	48
L+14	0.14	0	2	0	0	0	44	54
L+13	0.05	0	1	0	0	0	87	12
L+12	-0.09	1	4	13	16	2	10	53
L+11	-0.11	1	3	4	6	1	23	63
L+10	-0.18	1	2	7	10	1	11	67
L+9	-0.21	1	0	0	0	0	70	28
L+8	-0.22	1	1	0	0	0	74	23
L+7	-0.33	2	1	1	2	0	64	31
L+6	-0.37	4	2	5	7	1	36	43
L+5	-0.42	1	3	0	0	0	18	78
L+4	-0.45	1	1	1	0	0	23	74
L+3	-0.57	4	2	1	0	0	38	56
L+2	-0.65	2	1	1	0	0	86	9
L+1	-0.74	1	0	1	0	0	93	4
LUMO	-1.05	26	0	0	0	0	40	34
номо	-4.75	35	50	8	2	0	2	2
H-1	-4.79	34	49	10	2	0	3	2
H-2	-5.76	6	26	34	9	1	11	13
H-3	-5.86	14	19	28	6	0	15	17
H-4	-6.08	74	4	2	0	0	8	11
H-5	-6.3	17	7	2	0	0	29	45
H-6	-6.32	9	24	7	3	0	39	18
H-7	-6.44	8	30	9	1	0	6	47
H-8	-6.56	4	6	2	1	0	29	60
H-9	-6.6	3	1	2	1	0	42	50
H-10	-6.62	3	1	2	3	0	20	70
H-11	-6.66	3	1	1	2	0	18	74
H-12	-6.67	3	0	3	1	0	34	59
H-13	-6.76	2	2	3	1	0	43	50
H-14	-6.8	3	1	1	4	0	50	41
H-15	-6.83	6	2	3	15	1	31	41
H-16	-6.85	1	0	1	4	0	43	51
H-17	-6.89	3	1	2	9	1	45	40
H-18	-6.94	3	3	1	0	0	78	16
H-19	-6.96	5	2	1	0	1	75	16
H-20	-7.01	8	10	3	16	2	25	35

Orbital	Energy / eV	% Ru	%C≡P	%C≡C	%C=0	%OMe	%dppe1	%dppe2
L+20	0.78	9	62	1	7	0	13	8
L+19	0.61	7	68	3	4	0	14	4
L+18	0.43	16	9	1	1	0	30	42
L+17	0.31	1	2	1	7	0	17	72
L+16	0.29	0	1	0	79	1	2	17
L+15	0.25	1	1	0	7	0	13	78
L+14	0.21	1	1	1	4	0	82	10
L+13	0.18	1	3	3	10	1	68	15
L+12	0.14	1	7	8	36	2	25	21
L+11	0.05	1	2	3	12	1	38	44
L+10	-0.06	1	1	0	0	0	29	69
L+9	-0.11	1	0	0	1	0	65	32
L+8	-0.17	1	3	0	0	0	50	45
L+7	-0.19	2	0	0	1	0	48	50
L+6	-0.24	2	0	1	0	0	29	68
L+5	-0.33	0	1	0	1	0	23	75
L+4	-0.4	2	1	1	1	0	62	33
L+3	-0.41	0	1	0	0	0	85	13
L+2	-0.5	3	1	1	0	0	17	78
L+1	-0.52	2	0	0	0	0	89	8
LUMO	-0.91	24	0	0	0	0	37	39
номо	-4.36	30	24	22	17	3	2	2
H-1	-4.59	35	43	14	2	0	3	3
H-2	-5.08	5	42	16	21	5	5	6
H-3	-5.55	3	26	44	3	0	12	12
H-4	-5.92	80	1	0	0	0	9	9
H-5	-6.12	14	3	2	13	5	30	32
H-6	-6.22	17	12	2	3	1	20	45
H-7	-6.28	9	53	17	1	0	14	7
H-8	-6.38	10	9	5	13	4	24	35
H-9	-6.46	2	1	1	5	0	28	62
H-10	-6.5	2	1	1	58	0	16	23
H-11	-6.54	3	2	2	28	0	52	12
H-12	-6.57	2	0	3	4	1	37	52
H-13	-6.6	6	1	4	0	0	46	43
H-14	-6.62	2	2	0	0	0	33	62
H-15	-6.65	1	2	0	1	0	29	67
H-16	-6.67	2	2	1	1	1	56	38
H-17	-6.71	5	2	4	2	1	35	50
H-18	-6.73	2	1	0	0	0	63	34
H-19	-6.77	1	0	1	1	0	41	56
H-20	-6.81	4	2	5	0	0	49	40

Table S4. Composition of selected molecular orbitals for 8.

Table S5. First 100 excited states for 7 derived from TD-DFT.

			Osc.	Major contributions
No.	E ∕cm⁻¹	λ / nm	Strength	
1	21585.16	463.2813	0.0008	HOMO->LUMO (91%)
2	22161.85	451.2259	0.001	H-1->LUMO (91%)
3	27438.36	364.4532	0.0057	HOMO->L+1 (47%), HOMO->L+2 (20%),
				HOMO->L+3 (24%)
4	27738.4	360.511	0.0019	H-4->LUMO (74%)
5	28139.27	355.3753	0.0033	H-1->L+1 (60%), H-1->L+2 (11%), H-1->L+3 (20%)
6	28234.44	354.1774	0.0021	HOMO->L+1 (25%), HOMO->L+2 (69%)
7	28722.41	348.1602	0.0023	H-1->L+1 (19%), H-1->L+2 (58%), HOMO->L+3 (12%)
8	28810.32	347.0978	0.0005	H-1->L+2 (15%), HOMO->L+1 (20%), HOMO->L+3 (54%)
9	29276.51	341.5707	0.002	H-1->L+1 (14%), H-1->L+2 (11%), H-1->L+3 (68%)
10	29947.57	333.9169	0	HOMO->L+5 (78%)
11	30316.17	329.857	0.001	H-1->L+6 (21%), H-1->L+12 (10%), HOMO->L+4 (37%)
12	30433.93	328.5806	0.0011	H-1->L+5 (49%), HOMO->L+4 (26%)
13	30612.18	326.6674	0.0011	H-1->L+4 (10%), H-1->L+5 (22%), H-1->L+6 (17%),
				HOMO->L+4 (32%)
14	30855.76	324.0886	0.0021	H-1->L+4 (31%), H-1->L+6 (13%), HOMO->L+6 (22%),
4 -			0 0050	HOMO->L+7 (13%)
15	30952.55	323.0752	0.0053	H-1->L+4 (41%), HOMO->L+6 (29%), HOMO->L+7 (10%)
16	31510.69	317.3527	0.011	HOMO->L+6 (24%), HOMO->L+7 (47%), HOMO->L+8 (13%)
17	31544.56	317.0119	0.0012	H-1->L+7 (63%)
18	31968.81	312.8049	0.0049	HOMO->L+7 (18%), HOMO->L+8 (31%), HOMO->L+18 (12%)
19	32272.08	309.8654	0.0376	H-2->LUMO (62%)
20	32422.1	308.4316	0.0148	H-2->LUMO (12%), H-1->L+6 (21%), H-1->L+10 (14%), H-1->L+12 (16%)
21	32567.28	307.0567	0.0267	H-3->LUMO (35%), HOMO->L+10 (11%), HOMO->L+11 (15%)
22	32666.49	306.1241	0.0162	H-1->L+8 (13%), HOMO->L+10 (32%), HOMO->L+12 (10%)
23	32793.12	304.942	0.0013	HOMO->L+9 (80%)
24	32848.77	304.4254	0.0092	H-1->L+8 (33%), HOMO->L+8 (13%), HOMO->L+10 (16%)
25	33060.09	302.4795	0.0096	H-3->LUMO (10%), H-1->L+8 (13%), HOMO->L+8 (17%), HOMO->L+10 (16%), HOMO->L+11 (12%)
26	33244.79	300.799	0.0011	H-1->L+9 (52%), HOMO->L+11 (17%)
27	33351.26	299.8388	0.0035	H-1->L+8 (14%), H-1->L+9 (26%), HOMO->L+11 (22%)
28	33507.73	298.4386	0.0116	H-1->L+10 (23%), H-1->L+12 (12%), HOMO->L+12 (34%)
29	33655.33	297.1298	0.006	H-1->L+10 (12%), H-1->L+11 (71%)
30	33687.59	296.8452	0.011	H-1->L+10 (25%), H-1->L+12 (24%), HOMO->L+12 (15%),
				HOMO->L+18 (12%)
31	34795	287.3976	0.0023	HOMO->L+13 (86%)
32	34989.38	285.801	0.0017	H-1->L+15 (11%), H-1->L+17 (17%), HOMO->L+15 (14%)
33	35220.06	283.9291	0.0118	H-1->L+13 (58%)
34	35442.67	282.1458	0.0169	H-1->L+13 (21%), H-1->L+15 (11%), HOMO->L+15 (21%), HOMO->L+17 (12%)

35	35550.75	281.2881	0.0132	H-5->LUMO (76%)
36	35607.2	280.842	0.0004	HOMO->L+14 (66%)
37	35772.55	279.544	0.0184	H-1->L+14 (27%)
38	36050.01	277.3925	0.006	HOMO->L+14 (20%), HOMO->L+16 (19%)
39	36202.45	276.2244	0.0056	H-1->L+14 (47%)
40	36336.33	275.2066	0.0114	H-2->L+1 (22%), H-1->L+15 (24%)
41	36410.54	274.6458	0.0151	H-2->L+1 (37%), HOMO->L+15 (12%), HOMO->L+17 (13%)
42	36542.81	273.6516	0.005	HOMO->L+15 (13%), HOMO->L+16 (41%)
43	36653.31	272.8266	0.0119	H-1->L+15 (14%), H-1->L+16 (39%), H-1->L+17 (11%)
44	36717.03	272.3532	0.0103	H-2->L+1 (11%), HOMO->L+16 (21%), HOMO->L+20 (23%)
45	37034.82	270.0162	0.0012	H-1->L+15 (19%), H-1->L+16 (36%), H-1->L+17 (13%)
46	37121.12	269.3884	0.0135	H-6->LUMO (10%), H-3->L+1 (22%), HOMO->L+17 (11%), HOMO->L+20 (12%)
47	37275.98	268.2693	0.0264	H-6->LUMO (11%), H-3->L+1 (44%), H-1->L+20 (10%)
48	37390.51	267.4476	0.1014	H-6->LUMO (46%), H-2->L+3 (10%), H-1->L+20 (14%)
49	37598.6	265.9673	0.005	H-2->L+2 (61%), H-1->L+20 (12%)
50	37940.58	263.57	0.003	H-2->L+3 (65%), H-1->L+20 (13%)
51	38035.76	262.9105	0.0063	H-3->L+2 (78%)
52	38293.05	261.144	0.0174	H-4->L+1 (43%), H-3->L+3 (15%)
53	38505.98	259.6999	0.0382	H-7->LUMO (28%), H-3->L+3 (27%)
54	38539.05	259.4771	0.0819	H-7->LUMO (11%), H-4->L+1 (19%), H-3->L+3 (35%)
55	38623.74	258.9081	0.0705	H-7->LUMO (24%), H-2->L+4 (19%), H-1->L+19 (12%)
56	38952.01	256.7262	0.0464	H-4->L+1 (12%), H-4->L+2 (61%)
57	38981.04	256.5349	0.0275	H-2->L+4 (61%)
58	39207.69	255.052	0.004	H-2->L+5 (87%)
59	39520.63	253.0324	0.0155	H-4->L+2 (15%), H-4->L+3 (60%)
60	39616.61	252.4194	0.0151	H-3->L+5 (83%)
61	39752.92	251.5538	0.0032	H-3->L+4 (79%)
62	40053.77	249.6644	0.0084	H-3->L+6 (20%), H-2->L+6 (42%), H-2->L+7 (11%)
63	40153.78	249.0425	0.0468	H-9->LUMO (13%), H-8->LUMO (50%)
64	40282.83	248.2447	0.0058	H-3->L+6 (31%), H-2->L+7 (42%)
65	40432.05	247.3286	0.015	H-5->L+1 (70%)
66	40534.48	246.7036	0.0009	H-3->L+6 (21%), H-2->L+6 (18%), H-2->L+7 (12%), H-2->L+12 (11%)
67	40686.92	245.7792	0.0094	H-9->LUMO (18%), H-4->L+5 (17%)
68	40790.16	245.1572	0.0037	H-4->L+4 (13%), H-3->L+7 (44%)
69	40919.21	244.384	0.0038	H-4->L+4 (21%), H-3->L+7 (28%)
70	40932.11	244.307	0.0033	H-9->LUMO (16%), H-5->L+2 (30%), H-4->L+5 (30%)
71	41048.26	243.6157	0.0144	H-5->L+2 (33%), H-4->L+4 (21%)
72	41062.78	243.5296	0.0012	H-11->LUMO (14%), H-4->L+5 (29%)
73	41103.91	243.2859	0.0046	H-2->L+8 (62%)
74	41246.67	242.4438	0.015	H-6->L+1 (49%)
75	41364.43	241.7536	0.0055	H-11->LUMO (17%), H-10->LUMO (11%), H-2->L+9 (16%)
76	41379.75	241.6641	0.0003	H-4->L+4 (10%), H-4->L+6 (59%)
77	41479.77	241.0814	0.0029	H-2->L+9 (39%)

78	41561.23	240.6089	0.0015	H-13->LUMO (12%), H-5->L+3 (15%)
79	41576.55	240.5202	0.0232	H-2->L+9 (11%), H-2->L+10 (25%)
80	41638.66	240.1614	0.0248	H-6->L+2 (27%), H-5->L+3 (10%)
81	41671.73	239.9708	0.0053	H-3->L+8 (49%), H-2->L+10 (10%)
82	41774.16	239.3824	0.0018	H-13->LUMO (13%), H-6->L+2 (14%), H-5->L+3 (12%),
				H-3->L+9 (23%)
83	41838.69	239.0132	0.0179	H-14->LUMO (13%), H-12->LUMO (20%)
84	41908.05	238.6176	0.0092	H-12->LUMO (16%), H-4->L+7 (12%)
85	41967.74	238.2783	0.0215	H-12->LUMO (13%), H-4->L+7 (13%)
86	42047.59	237.8258	0.0076	H-4->L+7 (12%), H-3->L+10 (11%), H-3->L+12 (10%)
87	42086.3	237.607	0.0069	H-7->L+1 (28%)
88	42127.44	237.375	0.0195	H-14->LUMO (35%), H-3->L+9 (12%)
89	42210.51	236.9078	0.0077	H-13->LUMO (12%), H-2->L+11 (31%)
90	42263.74	236.6094	0.0062	H-4->L+7 (19%), HOMO->L+21 (23%)
91	42292.78	236.447	0.0079	H-7->L+1 (17%), H-2->L+11 (14%), HOMO->L+21 (14%)
92	42386.34	235.9251	0.0156	H-6->L+3 (48%), HOMO->L+21 (10%)
93	42493.61	235.3295	0.0178	H-3->L+11 (18%)
94	42504.91	235.267	0.0233	H-1->L+21 (50%)
95	42597.66	234.7547	0.0247	H-15->LUMO (13%), H-7->L+1 (15%), H-3->L+12 (11%)
96	42681.54	234.2933	0.0062	H-5->L+5 (11%), H-3->L+10 (37%), H-3->L+12 (22%)
97	42776.72	233.772	0.0005	H-5->L+5 (58%)
98	42866.24	233.2838	0.0244	H-16->LUMO (24%)
99	42939.64	232.885	0.0225	H-16->LUMO (11%)
100	43000.94	232.5531	0.0047	H-17->LUMO (11%)

Figure S6: Simulated UV/Vis spectrum for **7**, showing calculated electronic transitions, derived from TD-DFT.

Table S6. First 100 excited states for 8 derived from TD-DFT.

			Osc.	
No.	E /cm ⁻¹	λ / nm	Strength	Major contributions
1	22177.98	450.8977	0.001	HOMO->LUMO (87%)
2	23772.55	420.6532	0.0015	H-1->LUMO (88%)
3	27859.39	358.9454	0.0009	HOMO->L+1 (49%), HOMO->L+2 (31%)
4	27934.40	357.9816	0.001	H-4->LUMO (66%), H-3->LUMO (14%)
5	28380.43	352.3555	0.0035	HOMO->L+1 (38%), HOMO->L+2 (56%)
6	29245.06	341.9381	0.0033	HOMO->L+4 (73%)
7	29525.74	338.6875	0.0003	HOMO->L+3 (96%)
8	29747.55	336.1622	0.0085	H-1->L+1 (21%), H-1->L+2 (29%), HOMO->L+5 (23%)
9	29881.43	334.6560	0.0083	H-1->L+1 (23%), HOMO->L+5 (60%)
10	30278.26	330.2699	0.0051	H-1->L+1 (30%), H-1->L+2 (43%)
11	30670.25	326.0489	0.025	HOMO->L+6 (74%)
12	30930.77	323.3027	0.0136	H-2->LUMO (24%), HOMO->L+6 (14%),
				HOMO->L+7 (12%), HOMO->L+8 (38%)
13	31066.27	321.8925	0.0018	H-1->L+4 (11%), HOMO->L+7 (32%), HOMO->L+8 (24%)
14	31147.73	321.0506	0.0054	H-1->L+3 (19%), H-1->L+5 (17%), HOMO->L+7 (32%)
15	31195.32	320.5609	0.0026	H-1->L+1 (13%), H-1->L+4 (63%)
16	31285.66	319.6353	0.0145	H-2->LUMO (37%), H-1->L+3 (11%), HOMO->L+7 (16%),
				HOMO->L+8 (17%)
17	31663.13	315.8248	0.0189	H-1->L+3 (49%), H-1->L+5 (23%)
18	31825.24	314.2160	0.0095	H-1->L+5 (12%), HOMO->L+9 (50%), HOMO->L+10 (13%)
19	31903.48	313.4454	0.0668	H-1->L+5 (17%), HOMO->L+9 (45%), HOMO->L+10 (18%)
20	32215.62	310.4084	0.0088	HOMO->L+10 (47%)
21	32493.08	307.7579	0.0866	H-1->L+6 (39%), HOMO->L+11 (28%)
22	32774.57	305.1146	0.0107	H-1->L+6 (39%), H-1->L+8 (40%)
23	33024.60	302.8046	0.0021	H-1->L+7 (82%)
24	33176.23	301.4206	0.0033	HOMO->L+12 (69%)
25	33269.79	300.5730	0.0129	HOMO->L+13 (10%), HOMO->L+18 (18%),
				HOMO->L+19 (27%)
26	33388.36	299.5056	0.1955	HOMO->L+11 (24%), HOMO->L+19 (12%)
27	33540.80	298.1444	0.0179	H-1->L+8 (12%), H-1->L+9 (31%), H-1->L+11 (18%)
28	33926.33	294.7563	0.0273	H-1->L+9 (14%), H-1->L+10 (56%), HOMO->L+14 (15%)
29	34006.18	294.0642	0.0104	H-1->L+9 (46%), H-1->L+11 (18%)
30	34046.51	293.7159	0.0313	H-1->L+10 (18%), HOMO->L+13 (45%),
24	24272.25	204 7004	0.0007	HOMO->L+14 (25%)
31	34272.35	291.7804	0.0067	HOMO->L+13 (13%), HOMO->L+14 (21%), HOMO >L+15 (28%)
22	31159 17	290 1960	0 0059	HOMO -> [+13 (38%)] HOMO -> [+14 (15%)] HOMO -> [+15 (28%)]
52	J++JJ.+7	250.1500	0.0035	HOMO > 1 + 18 (13%), $HOMO > 1 + 19 (28%)$,
33	34507.06	289.7958	0.0019	HOMO->L+16 (76%)
34	34665.14	288.4742	0.0334	H-1->L+11 (11%). H-1->L+18 (22%). HOMO->L+17 (27%)
35	34889.37	286.6202	0.0594	H-4->LUMO (10%), H-3->LUMO (44%).
				HOMO->L+17 (19%)
36	34990.19	285.7944	0.0394	H-3->LUMO (23%), HOMO->L+17 (27%),
				HOMO->L+18 (11%)

37	35190.21	284.1699	0.008	H-1->L+12 (66%)
38	35262.00	283.5914	0.1351	H-1->L+19 (23%), HOMO->L+20 (24%)
39	35385.40	282.6024	0.0255	H-2->L+1 (24%), H-2->L+2 (52%)
40	35520.10	281.5308	0.0041	H-2->L+1 (65%), H-2->L+2 (26%)
41	36053.23	277.3676	0.0306	H-1->L+13 (74%)
42	36219.38	276.0953	0.0156	H-1->L+14 (58%), H-1->L+20 (11%)
43	36307.30	275.4267	0.0033	H-2->L+4 (62%), H-1->L+14 (10%)
44	36406.50	274.6762	0.0027	H-1->L+15 (16%), H-1->L+16 (72%)
45	36513.00	273.8753	0.0058	H-2->L+3 (87%)
46	36646.05	272.8807	0.0061	H-1->L+14 (11%), H-1->L+15 (46%), H-1->L+16 (19%),
				H-1->L+17 (12%)
47	36686.38	272.5807	0.0133	H-2->L+4 (11%), H-2->L+5 (20%), H-1->L+15 (24%)
48	36834.79	271.4825	0.0001	H-2->L+5 (39%), H-1->L+17 (46%)
49	36924.32	270.8242	0.0232	H-2->L+5 (31%), H-1->L+17 (26%), H-1->L+20 (14%)
50	37174.35	269.0027	0.0108	H-1->L+18 (10%), H-1->L+20 (17%), HOMO->L+21 (33%)
51	37711.52	265.1710	0.0143	H-2->L+6 (83%)
52	38071.25	262.6654	0.0208	H-2->L+7 (83%), H-2->L+8 (11%)
53	38104.31	262.4375	0.0062	H-2->L+7 (12%), H-2->L+8 (62%)
54	38200.29	261.7781	0.0209	H-1->L+21 (50%)
55	38372.90	260.6006	0.0227	H-4->L+1 (11%), H-3->L+1 (18%), H-2->L+8 (16%)
56	38595.51	259.0975	0.1142	H-5->LUMO (61%), H-3->L+1 (11%)
57	38770.53	257.9278	0.0367	H-4->L+2 (27%), H-3->L+1 (21%), H-3->L+2 (29%)
58	38830.22	257.5314	0.0058	H-2->L+9 (84%)
59	39006.85	256.3652	0.0462	H-7->LUMO (26%), H-2->L+10 (43%)
60	39027.02	256.2327	0.0204	H-7->LUMO (19%), H-2->L+10 (48%)
61	39114.93	255.6568	0.0193	H-7->LUMO (15%), H-4->L+1 (10%), H-3->L+1 (20%),
				H-3->L+2 (32%)
62	39270.60	254.6434	0.013	H-4->L+1 (38%), H-4->L+2 (18%), H-3->L+1 (12%),
c a		252 0204	0.0076	H-3->L+2 (17%)
63	39396.42	253.8301	0.0376	H-4->L+2 (19%), H-2->L+11 (20%), HOMO->L+20 (12%)
64	39498.86	253.1/19	0.0695	H-/->LUMO (14%), H-6->LUMO (41%), H-3->L+4 (10%)
65	39/22.2/	251./4/9	0.0586	H-6->LUMO (15%), H-4->L+4 (19%), H-3->L+4 (38%)
66	39849.71	250.9429	0.0069	H-4->L+3 (27%), H-3->L+3 (56%)
67	40052.96	249.6694	0.006	H-2->L+11 (26%), H-2->L+12 (49%)
68	40138.46	249.1376	0.0214	H-4->L+4 (10%), H-4->L+5 (16%), H-3->L+3 (11%),
60	10250 11	210 2000	0 0000	H-3->L+5 (52%) H 4 N +2 (14%) H 4 N +4 (25%) H 2 N +2 (17%)
09	40259.44	240.3009	0.0099	H-4->L+3 (14%), H-4->L+4 (23%), H-3->L+3 (17%), H-3->l+1 (25%)
70	40349.78	247.8328	0.0053	H-4->L+3 (42%), H-4->L+4 (14%)
71	40403.01	247.5063	0.0072	H-4->L+5 (11%), H-2->L+12 (25%), H-2->L+13 (15%)
72	40636.11	246.0866	0.008	H-4->L+5 (47%), H-3->L+5 (18%)
73	40740.96	245.4532	0.0359	H-2->L+11 (12%), H-2->L+19 (26%)
74	40922.43	244.3647	0.0111	H-8->IUMO (13%), H-4->I+6 (10%), H-3->I+6 (26%),
				H-3->L+8 (13%)
75	41011.16	243.8361	0.07	H-8->LUMO (22%), H-3->L+6 (20%), H-2->L+13 (12%)
76	41086.17	243.3909	0.0319	H-2->L+14 (71%)
77	41171.66	242.8855	0.0221	H-4->L+6 (11%), H-2->L+13 (42%), H-2->L+15 (17%)

78	41291.03	242.1833	0.0011	H-4->L+6 (15%), H-3->L+7 (12%), H-3->L+8 (10%),
				H-2->L+15 (25%)
79	41326.52	241.9754	0.0945	H-8->LUMO (21%), H-4->L+8 (19%), H-3->L+8 (24%)
80	41337.81	241.9093	0.0026	H-4->L+7 (10%), H-3->L+7 (45%), H-2->L+15 (16%)
81	41378.95	241.6688	0.0067	H-2->L+16 (76%)
82	41436.21	241.3348	0.0102	H-4->L+6 (24%), H-4->L+8 (14%)
83	41680.60	239.9198	0.0011	H-4->L+6 (19%), H-4->L+8 (26%), H-3->L+6 (19%)
84	41713.67	239.7296	0.0148	H-2->L+17 (58%)
85	41870.14	238.8337	0.0359	H-4->L+7 (28%), H-2->L+18 (32%)
86	41944.35	238.4112	0.0268	H-4->L+7 (27%), H-2->L+17 (11%), H-2->L+18 (22%)
87	42076.62	237.6617	0.0111	H-3->L+8 (10%), H-3->L+9 (34%), H-3->L+11 (15%)
88	42212.93	236.8942	0.0213	H-9->LUMO (22%), H-3->L+10 (10%)
89	42262.93	236.6139	0.0025	H-3->L+9 (20%), H-3->L+10 (13%)
90	42338.75	236.1902	0.033	H-5->L+1 (29%), H-3->L+10 (19%)
91	42391.99	235.8936	0.0158	H-10->LUMO (15%), H-9->LUMO (10%), H-4->L+7 (12%)
92	42491.19	235.3429	0.0267	H-5->L+1 (16%), H-4->L+10 (23%), H-4->L+11 (10%)
93	42588.79	234.8036	0.0024	H-4->L+9 (53%), H-4->L+10 (11%)
94	42608.15	234.6969	0.0024	H-5->L+1 (12%), H-4->L+11 (23%), H-3->L+10 (11%)
95	42725.10	234.0545	0.0197	H-5->L+2 (50%)
96	42764.62	233.8381	0.0093	H-4->L+18 (10%)
97	42848.50	233.3804	0.0075	H-11->LUMO (15%), H-4->L+9 (16%)
98	43014.65	232.4789	0.0087	H-11->LUMO (10%), H-10->LUMO (17%),
				H-9->LUMO (14%)
99	43177.58	231.6017	0.0029	H-14->LUMO (13%), H-4->L+10 (10%)
100	43230.81	231.3165	0.0405	

Figure S8: Simulated UV/Vis spectrum for **8**, showing calculated electronic transitions, derived from TD-DFT.

Figure S9: Experimental UV/Vis spectrum for 8, 1.0×10^{-5} mol dm⁻³ in CH₂Cl₂, 1 cm path.

References.

- [S1] N. Trathen, V. K. Greenacre, I. R. Crossley, S. M. Roe, *Organometallics*, 2013, **32**, 2501; C. E.
 Averre, M. P. Coles, I. R. Crossley, I. J. Day, *Dalton Trans.*, 2012, **41**, 278.
- [S2] M. A Fox, J. E. Harris, S. Heider, V. Perez-Gregorio, M. E. Zakizewska, J. D. Farmer, D. Yufit, J.
 A. K. Howard, P. J. Low, J. Organommet. Chem., 2009, 694, 2360.
- [S3] M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Gottingen, 1997
- [S4] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- [S5] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- [S6] GaussSum 2.2: N.M. O'Boyle, A.L. Tenderholt and K.M. Langner. J. Comp. Chem. 2008, 29, 839-845.