Supporting information for

High Temperature Ethylene Polymerization Catalyzed by Titanium (IV) Complexes with Tetradentate Aminophenolate Ligands in *cis*-O, N, N Chelating Mode

Ruiguo Zhao, Taotao Liu, Liying Wang, and Haiyan Ma*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China

1 X-ray diffraction studies

	2a	9a	6d	5e
Formula	C27H41Cl2N2O2Ti	C20H45Cl2N2O2Ti	CasH46Br4Cl4N4O5Ti2	C ₂₂ H ₅₂ ClN ₂ O ₅ Ti
FW	579.85	607.92	1195.96	629.11
T / K	293(2)	293(2)	293(2)	293(2)
Crystal system	Orthorhombic	Monoclinic	Triclinic	Monoclinic
Space group	Pca2(1)	C2/c	P-1	P2(1)/n
a /Å	17.9918(16)	31.567(14)	12.5385(17)	12.595(4)
<i>b</i> / Å	12.0283(11)	12.607(5)	16.754(2)	13.269(4)
<i>c</i> / Å	22.162(2)	24.650(10)	18.355(2)	21.982(7)
lpha/ °	90	90	99.214(3)	90
<i>β</i> / °	90	127.231	93.923(3)	104.538(4)
y °	90	90	103.434(3)	90
Volume / Å ³	4796.0(7)	7810(6)	3679.6(8)	3556(2)
Ζ	4	8	2	4
$D_{ m calc}$ / Mg m ⁻³	1.186	1.031	1.412	1.175
Abs coeff / mm ⁻¹	0.383	0.446	2.581	0.353
<i>F</i> (000)	1824	2560	1588	1352
Crystal size / mm	$0.341 \times 0.215 \times 0.056$	$0.25 \times 0.22 \times 0.20$	$0.311 \times 0.145 \times 0.056$	$0.12 \times 0.10 \times 0.06$
2θ range / °	1.69 to 25.50	1.62 to 27.50	1.68 to 25.50	1.70 to 25.01
Reflns collected	27081 / 8516	8551 / 8551	21588 / 13665	14395 / 6253
/ unique				
R(int)	0.1323	0.0000	0.0601	0.0542
Data / restrains / para	8516 / 159 / 501	8551 / 6 / 334	13665 / 5 / 578	6253 / 6 / 379
Goodness-of-fit on F^2	0.960	0.996	0.994	0.954
$R_1 [I > 2\sigma(I)]$	0.0782	0.0840	0.0802	0.0671
$wR_2 [I > 2\sigma(I)]$	0.1640	0.2359	0.2050	0.1849
Largest diff. peak and hole / $e Å^{-3}$	0.338 and -0.296	1.547 and -0.632	0.967 and -0.538	0.614 and -0.380

Table S1. Summary of crystallographic data for complexes 2a, 9a, 8d and 5e

2 ¹H NMR and ¹³C NMR spectra of the titanium and zirconium complexes

Fig. S3. ¹³C NMR spectrum of **1a** (CDCl₃, 100 MHz).

Fig. S6. ¹H NMR spectrum of **3a** (CDCl₃, 400 MHz).

Fig. S9. ¹³C NMR spectrum of **4a** (CDCl₃, 100 MHz).

Fig. S10. ¹H NMR spectrum of 6a (CDCl₃, 400 MHz).

Fig. S14. ¹H NMR spectrum of 9a (CDCl₃, 400 MHz).

Fig. S17. ¹³C NMR spectrum of 10a (CDCl₃, 100 MHz).

Fig. S20. 13 C NMR spectrum of 5e (CDCl₃, 100 MHz).

Fig. S23. ¹H NMR spectrum of **7e** (CDCl₃, 400 MHz).

3 Variable temperature ¹H NMR spectra of complex 2a

Fig. S27. Variable-temperature ¹H NMR spectra of 2a in toluene- d_8 (partial).

Fig. S28. Variable-temperature ¹H NMR spectra of **2a** in toluene- d_8 (partial)

4 Variable temperature ¹H NMR spectra of complex 5e

Fig. S29. Variable-temperature ¹H NMR spectra of **5e** in toluene- d_8

5 Ethylene polymerization catalyzed by titanium and zirconium complexes.

Entry	Cat.	Temp (°C)	Al/Ti	PE (mg)	Activity (kg/(mol-M·h))	$\frac{M_{\eta}^{b}}{(10^{4} \text{ g/mol})}$	$T_{\rm m}^{\ c}$ (°C)
1	1a	30	1000	13	78		
2	1 a	50	1000	16	96		
3	1a	80	1000	30	180	*	
4	2a	30	1000	34	204		
5	2a	50	1000	52	312		
6	2a	80	1000	61	366	*	133.4
7	3a	30	1000	45	330	*	
8	3a	50	1000	50	300	*	
9	3a	80	1000	59	354	*	
10	4 a	30	1000	11	66	*	
11	4 a	50	1000	33	198	*	
12	4 a	80	1000	45	270	38.48	
13	7a	30	1000	87	522	*	134.4
14	7a	50	1000	98	588	*	133.6
15	7a	80	1000	119	714	58.43	133.8
16	9a	30	1000	trace			
17	9a	50	1000	trace			
18	9a	80	1000	24	144		
19	10a	30	1000	trace			
20	10a	50	1000	trace			
21	10a	80	1000	20	120		
22	8b	30	1000	41	246	*	133.6
23	8b	50	1000	87	522	*	133.7
24	8b	80	1000	113	678	55.05	134.8

Table S2. The influence of polymerization temperature on the ethylene polymerization catalyzed by complexes **1a-4a**, **7a**, **9a-10a** and **8b**.^{*a*}

^{*a*} Conditions: toluene as solvent, [Cat.] = 0.04 μ mol/mL, V_{total} = 25 mL, MMAO as cocatalyst, 1 MPa of ethylene, 10 min; ^{*b*} Intrinsic viscosity was determined in decahydronaphthalene at 135 °C by Ubbelohde viscosimeter technique, and the viscosity average molecular weights were calculated using the relation: ⁹⁶ [η] = 6.67 × 10⁻⁴ $M_{\eta}^{0.67}$, in unit of 10⁴ g/mol; * insoluble. ^{*c*} Determined by DSC at a heating rate of 10 °C min⁻¹.

Fig. S29. ¹HNMR spectrum of polymer obatined by complex **8a** (entry 17, 400 MHz, o-C₆H₄Cl₂ : C₆D₆ = 4 : 1, 100 °C).