Synthesis of carbon embedded MFe_2O_4 (M = Ni, Zn and Co) nano-particles as efficient hydrogenation catalyst

Devaki Nandan^{ab}, Peta Sreenivasulu^{ab}, Nagabhatla Viswanadham^{ab*}, Ken Chiang^c and Jarrod Newnham^c

^aAcademy of Scientific and Innovative Research (AcSIR) at CSIR-Indian Institute of Petroleum Dehradun-248005 (Uttarakhand), India.

^bCatalysis and Conversion Processes Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Dehradun-248005, India, Fax: 91-135-2525702, Tel: 91-135-2525856, Email: <u>nvish@iip.res.in</u>

^cEarth Science and Resource Engineering, CSIRO, Clayton, VIC 3168, AUSTRALIA.

Table 1 Textular properties of the synthesized materials	Table 1 Textu	ral properties	of the synthesized	materials
---	---------------	----------------	--------------------	-----------

Sample	SA _{BET} m ² g ⁻¹ a	V _{tot} /cm ³ g ⁻	V _{mi} /cm ³ g ⁻	V _{me/} cm ³ g ⁻	D/nm ^e	Crystallite Size (nm) ^f
		10	1 c	1 d		
NiFe ₂ O ₄ @0	C 13.2	0.12	0.05	0.07	27.6	36.24
ZnFe ₂ O ₄ @	C 27.2	0.17	0.02	0.15	21.0	15.5
CoFe ₂ O ₄ @	C 39.3	0.18	0.01	0.17	18.9	18.2
appt ourfo	a area btatal	nora volum	na takan fra	m the volum	a of N	adsorbed at $P/P = 0.005$

^aBET surface area. ^btotal pore volume taken from the volume of N₂ adsorbed at P/P₀ = 0.995. ^cmicropore volume calculated from t-plot. ^dmesopore volume calculated by V_{tot}-V_{mi}. ^eBJH adsorption average pore diameter. ^fcrystal size measured by Scherrer's equation for the peak 20 value 30-60.

Table 2 Elemental composition of synthesized materials							
Sample	C(wt%)		Fe (wt%) ^a	Ni(wt%) ^a	Zn(wt%) ^a	Co(wt%) ^a	
	EDX	CHNS					
NiFe ₂ O ₄ @C ^b	37.02	24.25	21.08	38.70	0	0	
NiFe ₂ O ₄ @C ^c	35.05	23.15	20.70	36.00	0	0	
ZnFe ₂ O ₄ @C ^b	31.72	23.04	28.03	0	37.77	0	
CoFe ₂ O ₄ @C ^b	30.02	25.09	26.38	0	0	37.85	
NiFe2O4@Cd	-	-	0	0	0	0	
^a Metal % determined by ICP-AES. ^b Fresh catalyst. ^b Catalyst after 4 th cycle. ^d ICP-AES analysis							
using hot filtration after reaction							

 Table 2 Elemental composition of synthesized materials

Fig. S1 Enlarged XRD spectra of ZnFe₂O₄@C nano-particles showing ZnO phase impurity.

Fig. S2 (A) FT-IR spectra of NiFe₂O₄@C nano-particles, (B) FT-IR spectra of $ZnFe_2O_4@C$ nano-particles and (C) FT-IR spectra of CoFe₂O₄@C nano-particles

Fig. S3 (A) EDX spectra of NiFe₂O₄@C nano-particles, (B) EDX spectra of $ZnFe_2O_4$ @C nano-particle and (C) EDX spectra of CoFe₂O₄@C nano-particles

Fig. S4 N₂ adsorption desorption isotherm and respective pore size distribution (inset) of MFe₂O₄ nano-particles @ carbon. (A) NiFe₂O₄@C (B) ZnFe₂O₄@Cand (C) CoFe₂O₄@C.

Fig. S5 Photo of magnetic separation of NiFe₂O₄ nano-particle @C.