New Supramolecular Assemblies in Heterobimetallic Chemistry: Synthesis of a Homologous Series of Unsolvated Alkali-metal Zincates

David R. Armstrong, Helena S. Emerson, Alberto Hernán-Gómez,^{*} Alan R. Kennedy and Eva Hevia^{*}

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK, G11XL eva.hevia@strath.ac.uk

	Page
Experimental Section	2
NMR spectra	6
DFT calculations	17
References	24

EXPERIMENTAL SECTION

General Conditions

All reactions were performed under a protective argon atmosphere using standard Schlenk techniques. Hexane were dried by heating to reflux over sodium benzophenone ketyl and distilled under nitrogen prior to use. $Zn(CH_2SiMe_3)_2$, NaCH₂SiMe₃,¹ and KCH2SiMe₃² were synthesized as described in the literature. LiCH₂SiMe₃ was purchased from Sigma Aldrich Chemicals and used as received. TMEDA was distilled over CaH₂ prior to use All NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer, operating at 400.13 MHz for ¹H, 155.50 MHz for ⁷Li, and 100.62 MHz for ¹³C. All ¹³C NMR spectra were proton decoupled. Crystallographic data were collected at 123(2) K on an Oxford Diffraction diffractometer³ with Mo K α (λ = 0.71073 Å) and Cu K α (λ = 1.5413 Å) radiation.

Crystallographic data were measured at 123(2) K on Oxford Diffraction diffractometers³ with Mo K $\alpha(\lambda = 0.71073 \text{ Å})$ or Cu K $\alpha(\lambda = 1.5418 \text{ Å})$ radiation. Structures were refined to convergence on F^2 and against all independent reflections by the full-matrix least squares method using the SHELXL-97 program.⁴ Selected crystallographic and refinement details are given in Table S1 (see the Supporting Information for details). Elemental analyses were performed using a Perkin Elmer 2400 elemental analyzer; due to the extreme air-

sensitivity of compounds 4 and 5 satisfactory analyses could not be obtained.

Synthesis of [LiZn(CH₂SiMe₃)₃] (1). To a solution of LiCH₂SiMe₃ (1 mL, 1M in pentane) in hexane (10 mL) was added Zn(CH₂SiMe₃)₂ (2.8 mL, 0.36 M in hexane). The resulting colourless solution was stirred for one hour at room temperature affording a white suspension. Hexane was removed under vacuum to yield a white solid which washed with hexane (3 mL) at -30°C (0.28 g, 84%). ¹H NMR (400.03 MHz, 298 K, C₆D₆): δ (ppm) 0.19 (s, 27 H, Si(CH₃)₃), -1.11 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) 3.4 (Si(CH₃)₃), 1.6 (broad, SiCH₂). ⁷Li NMR (155.47 MHz, 298 K, C₆D₆): δ (ppm) -0.21 (broad, *Li*CH₂). ¹H NMR (400.03 MHz, 298 K, [D₈]THF): δ (ppm) -0.14 (s, 27 H, Si(CH₃)₃), -1.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, [D₈]THF): δ (ppm) 4.6 (Si(CH₃)₃), 2.7 (SiCH₂). ⁷Li NMR (155.47 MHz, 298 K, [D₈]THF): δ (ppm) 1.38 (*Li*CH₂) Anal Calcd for C₁₂H₃₃LiSi₃Zn: C, 43.16; H, 9.96. Found: C, 43.13, H, 10.18.

Synthesis of [NaZn(CH₂SiMe₃)₃] (2). To a suspension of NaCH₂SiMe₃ (0.11 g, 1mmol) in hexane (10 mL) was added Zn(CH₂SiMe₃)₂ (2.8 mL, 0.36 M in hexane). The resulting white suspension was stirred for one hour. Compound **1** was isolated as a white solid by evaporation of the solvent *in vacuo* and washing with hexane (3 mL) at -30°C (0.24g, 70%). ¹H NMR (400.03 MHz, 298 K, C₆D₆): δ (ppm) 0.28 (s, 27 H, Si(CH₃)₃), -1.14 (s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) 3.9 (Si(CH₃)₃), 2.9 (SiCH₂). ¹H NMR (400.03 MHz, 298 K, [D₈]THF): δ (ppm) -0.14 (s, 27 H, Si(CH₃)₃), -1.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) -0.14 (s, 27 H, Si(CH₃)₃), -1.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) -0.14 (s, 27 H, Si(CH₃)₃), -1.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) -0.14 (s, 27 H, Si(CH₃)₃), -1.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) -0.14 (s, 27 H, Si(CH₃)₃), -1.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) -0.14 (s, 27 H, Si(CH₃)₃), -1.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) -0.14 (s, 27 H, Si(CH₃)₃), -1.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) -0.14 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆) (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆) (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆) (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆) (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆) (broad s, 6H, SiCH₂).

[D₈]THF): δ (ppm) 4.6 (Si(CH₃)₃), 2.6 (SiCH₂).Anal Calcd for C₁₂H₃₃NaSi₃Zn: C, 41.18; H, 9.50. Found: C, 40.64 , H, 9.23.

Synthesis of $[KZn(CH_2SiMe_3)_3]$ (3). Following the same procedure above for the synthesis of 1 and 2, to a suspension of KCH_2SiMe_3 (0.11 g, 1mmol) in hexane (10 mL) was added $Zn(CH_2SiMe_3)_2$ (2.8 mL, 0.36 M in hexane), and the resulting thin suspension was stirred for one hour. Afterwards solvent was removed under vacuum affording a white solid which was washed with hexane (2 x 5 mL) at -30°C (0.16 g, 43%). ¹H NMR (400.03 MHz, 298 K, C₆D₆): δ (ppm) 0.39 (s, 18 H, Si(CH₃)₃), 0.28 (s, 9 H, Si(CH₃)₃) -1.16 (s, 4H, SiCH₂), -1.27 (s, 2H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) 4.4 (Si(CH₃)₃), 5.5, 4.1 (SiCH₂). ¹H NMR (400.03 MHz, 298 K, [D₈]THF): δ (ppm) -0.13 (s, 27 H, Si(CH₃)₃), -1.13 (broad s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, [D₈]THF): δ (ppm) 4.6 (Si(CH₃)₃), 2.7 (SiCH₂). Anal Calcd for C₁₂H₃₃KSi₃Zn: C, 39.37; H, 9.08. Found: C, 38.61, H, 8.68.

Synthesis of [(PMDETA)LiZn(CH₂SiMe₃)₃] (4). To a solution of LiCH₂SiMe₃ (1 mL, 1M in pentane) in hexane (20 mL) was added Zn(CH₂SiMe₃)₂ (2.8 mL, 0.36 M in hexane). After one hour stirring at room temperature all the volatiles were removed under vacuum and to the resulting white solid was added hexane (20 mL) and PMDETA (0.14 mL, 1 mmol). The suspension was stirred at room temperature for another hour and after gently heating the colorless solution was transferred to the freezer at -30°C. Crop of crystals of compound **4** were deposited overnight (0.45 g, 88%). ¹H NMR (400.03 MHz, 298 K, C₆D₆): δ (ppm) 1.84 (s, 12H, N(CH₃)₂, PMDETA), 1.81 (s, 3H, N(CH₃), PMDETA), 1.64 – 1.48 (8H, m, NCH₂, PMDETA), 0.44 (s, 27 H, Si(CH₃)₃), -0.92 (s, 6H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) 56.8, 53.0 (NCH₂, PMDETA), 45.7 (N(CH₃)₂, PMDETA), 45.3 (N(CH₃), PMDETA), 4.5 (Si(CH₃)₃), 2.4 (SiCH₂). ⁷Li NMR (155.47 MHz, 298 K, C₆D₆): δ (ppm) -0.07 (*Li*CH₂).

Synthesis of [(TMEDA)₂NaZn(CH₂SiMe₃)₃] (5). To a suspension of NaCH₂SiMe₃ (0.11 g, 1mmol) in hexane (15 mL) was added Zn(CH₂SiMe₃)₂ (2.8 mL, 0.36 M in hexane). The resulting white suspension was stirred for one hour and all the volatiles were removed under vacuum. Then TMEDA (0.3 mL, 2 mmol) was introduced and the mixture was stirred for another hour. Compound **5** was isolated as a white solid by evaporation of the solvent *in vacuo* and washing with hexane (3 mL) at -30°C (0.26g, 45%). ¹H NMR (400.03 MHz, 298 K, C₆D₆): δ (ppm) 1.86 (s, 24H, N(CH₃)₂, TMEDA), 1.81 (s, 8H, NCH₂, TMEDA), 0.39 (s, 27 H, Si(CH₃)₃), -0.85 (s, 4H, SiCH₂), -1.04 (s, 2H, SiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298 K, C₆D₆): δ (ppm) 57.1 (NCH₂, TMEDA), 46.1 (N(CH₃)₂, TMEDA), 4.3 (Si(CH₃)₃), 2.7 (SiCH₂), -5.4 (SiCH₂).

	1	2	3	4	5
Empirical formula	C ₁₂ H ₃₃ Li1Si ₃ Zn1	$C_{12}H_{33}Na_1Si_3Zn_1$	$C_{12}H_{33}K_1Si_3Zn_1$	$C_{21}H_{56}Li_1N_3Si_3Zn_1$	$C_{24}H_{65}N_4Na_1Si_3Zn_1$
Molecular Weight	333.96	350.01	366.12	507.27	582.45
Temperature (K)	123(2)	123(2)	123(2)	123(2)	123(2)
Wavelenght (Å)	1.54180	0.71073	0.71073	0.71073	1.54180
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P 2 ₁ /n	P 2 ₁ /n	P 2 ₁ /c	P 2 ₁ /c	P 21/c
a (Å)	6.6086(1)	9.9657(2)	11.0083(11)	16.1037(4)	16.9890(6)
b (Å)	19.8732(4)	24.5335(4)	18.6159(10)	10.6433(2)	11.2669(3)
c (Å)	15.9308(4)	16.5399(3)	11.2426(10)	18.4366(4)	19.2447(6)
β (°)	99.070(2)	90.708(2)	115.011(11)	91.390(2)	90.577(3)
Cell volume (Å ³)	2066.10(7)	4043.59(13)	2087.9(3)	3159.04(12)	3683.5(2)
Z	4	8	4	4	4
hocalc (g.cm-3)	1.074	1.15	1.165	1.067	1.05
μ (mm ⁻¹)	3.157	1.398	1.532	0.902	2.088
F (000)	720.0	1504	784	1112	1280
2θ max(°)	146.38	60.36	59.84	58.0	146.28
	-5≤h≤8	-13≤h≤13	-15≤h≤14	-21≤h≤21	-21≤h≤20
Index ranges	-24≤k≤24	-34≤k≤32	-25≤k≤24	-14≤ <i>k</i> ≤13	-13≤k≤9
	-19≤/≤19	-21≤l≤22	-15≤ / ≤15	-25≤/≤24	-23≤/≤21
Reflections collected	19027	43450	21930	31044	19805
Reflections unique	4119	11018	5515	8256	7314
Reflections obs.	3464	8753	3182	6171	5267
R _{int}	0.0369	0.0403	0.0664	0.0449	0.0489
No. Parameters	187	406	196	300	368
Goodnes-of-fit- on F ² (GOF)	1.02	1.076	0.998	1.033	1.02
Final <i>R</i> indices [<i>I</i> >2σ(<i>I</i>)]	0.0306	0.0378	0.0512	0.0402	0.0429
R indices (all data)	0.0781	0.0803	0.1287	0.0849	0.1066
Largest diff. peak and hole (e Å ⁻³)	0.380 and - 0.297	0.682 and -0.362	1.244 and -0.363	0.424 and -0.327	0.304 and -0.232

Table S1. Selected crystallographic and refinement parameters.

	M = Li(1)
Zn1-C1	2.056(2)
Zn1-C5	2.051(2)
Zn1-C9'	2.021(2)
Li-C1	2.257(4)
Li1-C5	2.226(4)
Li1-C9	2.241(4)
Li1-C11	2.515(4)

	M = Li(1)
C1-Zn1-C5	112.7(1)
C1-Zn1-C9	124.1(1)
C5-Zn1-C9	123.2(1)
C1-Li1-C5	99.4(1)
C1-Li1-C9	125.8(2)
C5-Li1-C9	126.7(2)
C11-Li1-C1	108.6(1)
C11-Li1-C5	111.9(1)
C11-Li1-C9	81.5(1)

Table S2. Selected bond distances (Å) and angles (deg) for alkali-metal zincate $1 \label{eq:s2}$

	$M = Na (2)^{a}$
Zn1-C1	2.051(2)
Zn1-C5	2.056(2)
Zn1-C9	2.074(2)
Zn2-C17	2.065(2)
Zn2-C21	2.052(2)
Zn2-C13	2.047(2)
Na1-C1	2.700(2)
Na1-C13'	2.684(2)
Na1-C9	2.670(2)
Na1-C11'	3.215(2)
Na1-C14'	2.975(3)
Na1-C20'	2.984(3)
Na2-C5	2.697(2)
Na2-C17	2.655(2)
Na2-C21	2.658(2)
Na2-C7	2.816(3)
Na2-C4'	3.216(3)

	M = Na(2)
C1-Zn1-C5	128.57(9)
C1-Zn1-C9	122.97(8)
C5-Zn1-C9	108.46(9)
C13-Zn2-C17	121.28(9)
C13-Zn2-C21	119.60(9)
C17-Zn2-C21	119.12(9)
C1-Na1-C9	84.91(7)
C13'-Na1-C14'	66.58(7)
C1-Na1-C13'	108.14(7)
C9-Na1-C14'	98.76(7)
C11-Na1-C20'	164.17(6)
C5-Na2-C7	69.67(7)
C17-Na2-C21	83.85(7)
C5-Na2-C21	102.19(8)
C7-Na2-C17	98.44(7)
C4'-Na2-C5	102.09(7)
C4'-Na2-C7	89.04(8)
C4'-Na2-C21	97.26(8)
C4'-Na2-C17	123.22(7)

Table S4. Selected bond distances (Å) and angles (deg) for alkali-metal zincate 3.

	M = K (3)
Zn1-C1	2.044(3)
Zn1-C5	2.042(4)
Zn1-C9	2.057(3)
K1-C1	3.119(3)
K1-C5'	3.141(4)
K1-C9'	3.093(3)
K1-C3	3.331(4)
K1-C11'	3.209(5)
K1-C12'	3.530(4)
K1-C2'	3.417(5)

	M = K (3)
C1-Zn1-C5	121.3(1)
C1-Zn1-C9	123.9(1)
C5-Zn1-C9	114.4(1)
C2'-K1-C12'	172.8(1)
C1-K1-C3	58.00(9)
C5'-K1-C9'	93.80(9)
C3-K1-C9'	123.28(9)
C1-K1-C5'	84.88(9)
C11'-K1-C12'	74.5(1)
C11'-K1-C3	76.0(1)
C11'-K1-C9'	60.4(1)

M = Li (4)
2.041(2)
2.061(2)
2.049(2)
2.388(4)
2.133(3)
2.196(3)
2.166(4)

	M = Li (4)
C1-Zn1-C5	123.01(8)
C1-Zn1-C9	120.61(8)
C5-Zn1-C9	116.37(8)
N1-Li1-C5	122.1(2)
N1-Li1-N2	83.6(1)
N1-Li1-N3	119.3(1)
N2-Li1-C5	101.4(1)
N2-Li1-N3	85.3(1)
N3-Li1-C5	118.6(1)

Table S6. Selected bond distances (Å) and angles (deg) for alkali-metal zinc	ate 5
--	-------

	M = Na (5)
Zn1-C1	2.053(3)
Zn1-C5	2.035(3)
Zn1-C9	2.055(3)
Na1-C1	3.022(3)
Na1-C9	3.029(3)
Na1-N1	2.565(3)
Na1-N2	2.519(2)
Na1-N3	2.64(1)
Na1-N4	2.62(1)

	M = Na (5)
C1-Zn1-C5	122.1(1)
C1-Zn1-C9	117.2(1)
C5-Zn1-C9	120.7(1)
C1-Na1-C9	70.82(8)
C1-Na1-N1	90.79(8)
C9-Na1-N4	91.6(3)
N1-Na1-N4	111.5(3)
N2-Na1-N3	172.0(2)

NMR Spectra

Table S7. Chemical shifts (ppm) in the ¹H and ¹³C NMR spectra of the alkali-metal zincates 1–5 in C₆D₆.^a

Compound	δ^{1} H (CH ₂)	δ ¹ H (CH ₃)	δ ¹³ C (CH ₂)	δ ¹³ C (CH ₃)
Li(CH ₂ SiMe ₃)	-2.03	0.16	-4.4	3.3
Li(CH ₂ SiMe ₃) ^b	-2.44	0.15		
Na(CH ₂ SiMe ₃) ^b	-2.60	0.18		
$Zn(CH_2SiMe_3)_2$	-0.63	0.05	3.2	3.1
$[\text{LiZn}(\text{CH}_2\text{SiMe}_3)_3]$ (1)	-1.11 (-1.14)	0.19 (-0.14)	1.6 (2.7)	3.4 (4.6)
$[NaZn(CH_2SiMe_3)_3] (2)$	-1.14 (-1.14)	0.28 (-0.14)	2.9 (2.6)	3.9 (4.6)
$[KZn(CH_2SiMe_3)_3] (3)$	-1.16, -1.27 (-1.13)	0.39, 0.28 (-0.13)	5.5, 4.1 (2.7)	4.4 (4.6)
[(PMDETA)LiZn(CH ₂ SiMe ₃) ₃] (4)	-0.92	0.44	2.4	4.5
$[(TMEDA)_2NaZn(CH_2SiMe_3)_3]$ (5)	-0.84	0.41	2.7	4.3

^a Chemical shifts (ppm) of the alkali-metal zincates 1-3 in [D₈]-THF denoted in parenthesis. ^b Low solubility and poor stability of M(CH₂SiMe₃) (M = Na, K) precluded the acquisition of meaningful ¹³C NMR spectra

$[LiZn(CH_2SiMe_3)_3]$ (1)

It is noticeable that the signal assigned to the methylene (Zn-CH₂) fragments in the ¹³C{¹H} NMR spectrum is broad as well as the peak observed in the ⁷Li NMR spectrum. According to the retention of the contacted ion-pair solid state structure in solution, the broadening of the signals is possibly due to a ⁷Li-¹³C coupling.⁵ Indeed, the solvent separated version of **1**, characterized by NMR spectroscopy in $[D_8]$ THF solution, shows sharp signals.

Table S5. Selected bond distances (Å) and angles (deg) for alkali-metal zincate ${\bf 4}$

Figure S1. ¹H NMR of 1 in C_6D_6 solution at 298K

Figure S2. ${}^{13}C{}^{1}H$ NMR of 1 in C₆D₆ solution at 298K

Figure S5. ¹³C{¹H} NMR of 1 in [D₈]THF solution at 298K

Figure S6. ⁷Li NMR of 1 in [D₈]THF solution at 298K

Figure S7. ¹H NMR of 1 in C₇D₇ solution at 298K

Figure S8. ¹H NMR of 1 in C₇D₇ solution at 213K

[NaZn(CH₂SiMe₃)₃] (2)

Figure S9. ¹H NMR of 2 in C_6D_6 solution at 298K

Figure S10. ${}^{13}C{}^{1}H$ NMR of 2 in C₆D₆ solution at 298K

Figure S11. ¹H NMR of 2 in [D₈]THF solution at 298K

Figure S12. $^{13}C{^{1}H}$ NMR of 2 in [D₈]THF solution at 298K

Figure S13. ¹H NMR of 2 in C₇D₇ solution at 298K

Figure S14. ¹H NMR of 2 in C_7D_7 solution at 213K

[KZn(CH₂SiMe₃)₃] (3)

Figure S15. ¹H NMR of **3** in C_6D_6 solution at 298K

Figure S17. $^{13}\text{C}\{^{1}\text{H}\}$ NMR of 3 in C_6D_6 solution at 298K

Figure S18. ¹H NMR of 3 in [D₈]THF solution at 298K

Figure S19. ${}^{13}C{}^{1}H$ NMR of 3 in [D₈]THF solution at 298K

Figure S20. Comparison of ¹H NMR spectra for 1-3 in C₆D₆ solution at 298K

Figure S21. Comparison of ¹H NMR spectra for 1-3 in C₆D₆ solution at 298K

[(PMDETA)LiZn(CH₂SiMe₃)₃] (4).

Figure S22. ¹H NMR of 4 in C_6D_6 solution at 298K

Figure S23. $^{13}\text{C}\{^{1}\text{H}\}$ NMR of 4 in C_6D_6 solution at 298K

Figure S24. ⁷Li NMR of 4 in [D₈]THF solution at 298K

$[(TMEDA)_2NaZn(CH_2SiMe_3)_3]$ (5).

Figure S26. ¹³C{¹H} NMR of 5 in C_6D_6 solution at 298K

DFT calculations

Density Functional Theory calculations⁶ were performed using the Gaussian computational package G03.⁷ In this series of calculations the B3LYP density functionals⁸ and the 6-31G(d) basis set⁹ were used. For the Monomers and Dimers of MZn(CH₂SiMe₃)₃ a frequency analysis was performed after each geometry optimisation. The energy values quoted include the zero point energy contribution. For the Trimers of MZn(CH₂SiMe₃)₃, the energy value quoted is the total energy value only.

Geometry optimization for Zn(CH₂SiMe₃)₂

Zn-C 1.925 Å C-Zn-C 178.1 °

E = -2676.024427 a.u.

Geometry optimization for [LiCH₂SiMe₃]₆-C1 symmetry

Each C of a CH_2 is bonded to 3 neighbouring Li atoms. The range of these bonds is:

2.174 – 2.183 Å

2.186 – 2.195 Å

2.262 – 2.279 Å

E = -2735.988528 a.u.

Geometry optimization for LiZn(CH₂SiMe₃)₂

Li-C ₁	2.093 Å
Li-C ₂	2.090 Å
LiC _{Me1}	2.407 Å
LiC _{Me2}	2.374 Å
Zn-C1	2.110 Å
Zn-C ₂	2.126 Å
Zn-C ₃	1.982 Å
C ₁ -Li-C ₂	113.1 °
C ₁ -Zn-C ₂	110.9 °
Li-C ₁ -Zn	68.1°
Li-C ₂ -Zn	67.9 °
C ₁ -Zn-C ₃	126.8 °
C ₂ -Zn-C ₃	122.3 °

$$\label{eq:expectation} \begin{split} &\mathsf{E}=-3132.024283 \ a.u.\\ &\mathsf{Geometry\ optimization\ for\ }[\mathsf{LiZn}(\mathsf{CH}_2\mathsf{SiMe}_3)_2]_2 \end{split}$$

Li ₁ -C ₁	2.113 Å	Li ₁ -C _B	2.390 Å
Li ₁ -C ₂	2.118 Å	C ₁ -Si ₁	1.878 Å
Li_1-C_A	2.342 Å	C ₂ -Si ₂	1.877 Å

C ₃ -Si ₃	1.879 Å
Si ₁ -C _A	1.934 Å
Si ₂ -C _B	1.930 Å
Si₃-C _C	1.909 Å
Zn ₁ -C ₁	2.103 Å
Zn ₁ -C ₂	2.086 Å
Zn ₁ -C ₃	2.013 Å
Li ₂ -C ₃	2.309 Å
Li ₂ -C ₄	2.147 Å
Li ₂ -C ₅	2.168 Å
Li ₂ -C _C	2.720 Å
C ₄ -Si ₄	1.880 Å
C ₅ -Si ₅	1.881 Å
C ₆ -Si ₆	1.870 Å
Zn ₂ -C ₄	2.103 Å
Zn_2-C_5	2.105 Å
Zn ₂ -C ₆	1.995 Å
C_1 -Li ₁ - C_2	110.1 °
C_1 - Zn_1 - C_2	112.8 °
Li ₁ -C ₁ -Zn ₁	67.9 °
$Li_1-C_2-Zn_1$	68.2 °
$Zn_1 - C_1 - Si_1$	125.5 °

Zn ₁ -C ₂ -Si ₂	118.4 °
$Zn_1-C_3-Si_3$	111.3 °
Zn ₁ -C ₃ -Li ₂	158.0 °
C ₄ -Li ₂ -C ₅	103.6°
C_4 - Zn_2 - C_5	107.4 °
Li ₂ -C ₄ -Zn ₂	68.9 °
Li ₂ -C ₅ -Zn ₂	68.4 °
Zn ₂ -C ₄ -Si ₄	108.9 °
Zn ₂ -C ₅ -Si ₅	107.9 °
Zn ₂ -C ₆ -Si ₆	115.4 °

E = -3132.024283 a.u.

Geometry optimization for $[LiZn(CH_2SiMe_3)_2]_3$

Li_1-C_1	2.139 Å	C₅-Si₅	1.884 Å
Li ₁ -C ₂	2.125 Å	C ₆ -Si ₆	1.879 Å
Li ₁ -C _A	2.325 Å	Si ₆ -C _D	1.912 Å
Li ₁ -C _B	2.388 Å	Zn ₂ -C ₄	2.080 Å
C_1 -Si ₁	1.879 Å	Zn ₂ -C ₅	2.079 Å
C ₂ -Si ₂	1.877 Å	Zn ₂ -C ₆	2.031 Å
C ₃ -Si ₃	1.877 Å	Li ₃ -C [,]	2.307 Å
		Li ₃ -C ₇	2.168 Å
Si ₁ -C _A	1.933 Å	Li ₃ -C ₈	2.164 Å
Si ₂ -C _B	1.929 Å	Li ₃ -C _D	2.704 Å
Si ₃ -C _C	1.913 Å	C ₇ -Si ₇	1.879 Å
Zn ₁ -C ₁	2.091 Å	C ₈ -Si ₈	1.879 Å
Zn ₁ -C ₂	2.086 Å	C ₉ -Si ₉	1.869 Å
Zn ₁ -C ₃	2.018 Å	Zn ₃ -C ₇	2.101 Å
Li ₂ -C ₃	2.290 Å	Zn ₃ -C ₈	2.101 Å
Li ₂ -C ₄	2.191 Å	Zn ₃ -C ₉	1.997 Å
Li ₂ -C ₅	2.202 Å		
Li ₂ -C _C	2.645 Å		
C ₄ -Si ₄	1.884 Å	C ₁ -Li ₁ -C ₂	110.2 °

C_1 - Zn_1 - C_2	113.7 °	Zn ₃ -C ₇ -Si ₇	108.3 °
$Li_1-C_1-Zn_1$	67.7 °	Zn ₃ -C ₈ -Si ₈	108.9 °
Li_1 - C_2 - Zn_1	68.1 °	Zn ₃ -C ₉ -Si ₉	115.9 °
Zn_1 - C_1 - Si_1	125.9 °		
Zn_1 - C_2 - Si_2	118.7 °		
Zn_1 - C_3 - Si_3	110.8°	E = -9397.3	491391 a.u.
Zn_1 - C_3 - Li_2	159.6 °		
C_4 - Li_2 - C_5	110.7 °		
C_4 - Zn_2 - C_5	110.0 °	• 7	
Li_2 - C_4 - Zn_2	68.9 °	, ° ×	7 D 6 4 4 C 3
Li_2 - C_5 - Zn_2	68.7 °		
Zn_2 - C_4 - Si_4	109.6 °		3 6 2 2 3 3 1
Zn_2 - C_5 - Si_5	110.1 °		
Zn_2 - C_6 - Si_6	111.1 °	•	
Zn_2 - C_6 - Li_3	158.4 °		-
C_7 -Li ₃ - C_8	102.9 °		
C_7 - Zn_3 - C_8	107.5 °		
Li_3 - C_7 - Zn_3	68.8 °		
Li_3 - C_8 - Zn_3	68.9 °		

Geometry optimization for [NaCH₂SiMe₃]₄-C₂ symmetry

Each C of a CH_2 is bonded to 3 neighbouring

Na atoms. The range of these bonds is from

2.552 Å to 2.677 Å.

E = -2443.002271 a.u.

Geometry optimization for NaZn(CH₂SiMe₃)₂

Na-C ₁	2.471 Å
Na-C ₂	2.458 Å
NaC_{Me1}	2.647 Å
NaC _{Me2}	2.667 Å
Zn-C ₁	2.105 Å
Zn-C ₂	2.098 Å
Zn-C₃	1.996 Å
C ₁ -Na-C ₂	95.3 °
C ₁ -Zn-C ₂	120.2 °
Na-C ₁ -Zn	71.9 °
Na-C ₂ -Zn	72.3 °
C ₁ -Zn-C ₃	120.2 °
C ₂ -Zn-C ₃	119.1 °

Geometry optimization for [NaZn(CH₂SiMe₃)₂]₂

E =-3286.778482 a.u.

Na ₁ -C ₁	2.505 Å
Na ₁ -C ₂	2.489 Å
Na ₁ -C _A	2.628 Å
Na ₁ -C _B	2.656 Å
C ₁ -Si ₁	1.875 Å
C ₂ -Si ₂	1.876 Å
C ₃ -Si ₃	1.870 Å
Si ₁ -C _A	1.932 Å
Si ₂ -C _B	1.931 Å
Si ₃ -C _C	1.919 Å
Zn ₁ -C ₁	2.079 Å
Zn ₁ -C ₂	2.075 Å
Zn ₁ -C ₃	2.033 Å
Na ₂ -C ₃	2.656 Å
Na ₂ -C ₄	2.499 Å
Na ₂ -C ₅	2.507 Å
Na ₂ -C _c	2.796 Å
C_4 -Si ₄	1.877 Å
C ₅ -Si ₅	1.876 Å
C ₆ -Si ₆	1.865 Å
Zn ₂ -C ₄	2.091 Å
Zn ₂ -C ₅	2.090 Å
Zn_2-C_6	2.007 Å
C ₁ -Na ₁ -C ₂	93.6 °
C_1 - Zn_1 - C_2	122.5 °

$Na_1-C_1-Zn_1$	71.5 °	
$Na_1-C_2-Zn_1$	71.9 °	
$Zn_1-C_1-Si_1$		125.8°
Zn ₁ -C ₂ -Si ₂		118.3 °
$Zn_1-C_3-Si_3$		113.9 °
$Zn_1-C_3-Na_2$	155.5 °	
C_4 -Na ₂ -C ₅		87.9 °
C_4 - Zn_2 - C_5		112.4 °
Na ₂ -C ₄ -Zn ₂		71.9 °
$Na_2-C_5-Zn_2$		71.7 °
Zn ₂ -C ₄ -Si ₄		110.0 °
Zn ₂ -C ₅ -Si ₅		110.5 °
Zn ₂ -C ₆ -Si ₆		114.0°

E = -6573.574848 a.u.

Geometry optimization for [NaZn(CH₂SiMe₃)₂]₃

Na ₁ -C ₁	2.515 Å	C₅-Si₅	1.881 Å
Na ₁ -C ₂	2.497 Å	C ₆ -Si ₆	1.872 Å
Na ₁ -C _A	2.633 Å	Si ₆ -C _D	1.918 Å
Na ₁ -C _B	2.653 Å	Zn ₂ -C ₄	2.069 Å
C ₁ -Si ₁	1.876 Å	Zn ₂ -C ₅	2.069 Å
C ₂ -Si ₂	1.876 Å	Zn ₂ -C ₆	2.045 Å
C ₃ -Si ₃	1.871 Å	Na ₃ -C ₆	2.642 Å
Si ₁ -C _A	1.931 Å	Na ₃ -C ₇	2.512 Å
Si ₂ -C _B	1.930 Å	Na ₃ -C ₈	2.508 Å
Si ₃ -C _C	1.922 Å	Na ₃ -C _D	2.830 Å
Zn ₁ -C ₁	2.075 Å	C ₇ -Si ₇	1.876 Å
Zn ₁ -C ₂	2.070 Å	C ₈ -Si ₈	1.876 Å
Zn ₁ -C ₃	2.038 Å	C ₉ -Si ₉	1.864 Å
Na ₂ -C ₃	2.629 Å	Zn ₃ -C ₇	2.088 Å
Na ₂ -C ₄	2,531 Å	Zn ₃ -C ₈	2.089 Å
Na ₂ -C ₅	2.540 Å	Zn ₃ -C ₉	2.009 Å
Na ₂ -C _C	2.780 Å		
C ₄ -Si ₄	1.881 Å		

E = -9861.617922 a.u.

Geometry optimization for [KCH₂SiMe₃]₆–C_i symmetry

Each C of a CH_2 is bonded to 3 neighbouring

K atoms. The range of these bonds is:

- (a) 2.987 2.995 Å
- (b) 3.013 3.018 Å
- (c) 3.021 3.026 Å

E = -3724.381870 a.u.

E = -6290.117682 a.u.

Geometry optimization for KZn(CH₂SiMe₃)₂

K-C ₁	2.894 Å
K-C ₂	2.872 Å
KC _{Me1}	3.099 Å
KC _{Me2}	3.093 Å
Zn-C ₁	2.080 Å
Zn-C ₂	2.096 Å
Zn-C₃	2.005 Å
C ₁ -K-C ₂	79.2 °
C ₁ -Zn-C ₂	123.4 °
K-C ₁ -Zn	78.4 °
K-C ₂ -Zn	78.7 °
C ₁ -Zn-C ₃	104.8 °
C ₂ -Zn-C ₃	114.5 °

Geometry optimization for $[KZn(CH_2SiMe_3)_2]_2$

K ₁ -C ₁	2.909 Å	Si₃-C _C	1.921 Å
K ₁ -C ₂	2.950 Å	Zn ₁ -C ₁	2.072 Å
K ₁ -C _A	3.100 Å	Zn ₁ -C ₂	2.059 Å
K ₁ -C _B	3.123 Å	Zn ₁ -C ₃	2.036 Å
C_1 -Si ₁	1.873 Å	K ₂ -C ₃	3 <i>,</i> 146 Å
C ₂ -Si ₂	1.873 Å	K ₂ -C ₄	2.946 Å
C ₃ -Si ₃	1.865 Å	K ₂ -C ₅	2.935 Å
Si ₁ -C _A	1.927 Å	K ₂ -C _C	3.295 Å
Si ₂ -C _B	1.923 Å	C ₄ -Si ₄	1.872 Å

C_5-Si_5 C_6-Si_6 Zn_2-C_4 Zn_2-C_5 Zn_2-C_6	1.872 Å 1.859 Å 2.073 Å 2.072 Å 2.011 Å
$C_1 - K_1 - C_2$	77.8 °
C_1 - Zn_1 - C_2	126.0 °
K_1 - C_1 - Zn_1	78.2 °
$K_1-C_2-Zn_1$	77.4 °
$Zn_1-C_1-Si_1$	118.2 °
$Zn_1-C_2-Si_2$	114.3 °
Zn ₁ -C ₃ -Si ₃	115.9 °
Zn ₁ -C ₃ -K ₂	147.7 °
$C_4 - K_2 - C_5$	71.6 °
C_4 - Zn_2 - C_5	112.2 °
K_2 - C_4 - Zn_2	75.3 °
K ₂ -C ₅ -Zn ₂	75.6 °

Zn_2 - C_4 - Si_4	111.8 °
$Zn_2-C_5-Si_5$	112.1 °
$Zn_2-C_6-Si_6$	111.9 °

E = -7448.783134 a.u.

Geometry optimization for $[KZn(CH_2SiMe_3)_2]_3$

K ₁ -C ₁	2.925 Å
K ₁ -C ₂	2.950 Å
K ₁ -C _A	3.107 Å
K ₁ -C _B	3.117 Å
C ₁ -Si ₁	1.872 Å
C ₂ -Si ₂	1.874 Å
C ₃ -Si ₃	1.869 Å
Si ₁ -C _A	1.925 Å
Si ₂ -C _B	1.923 Å
Si ₃ -C _C	1.920 Å
Zn ₁ -C ₁	2.072 Å
Zn ₁ -C ₂	2.056 Å
Zn ₁ -C ₃	2.038 Å
K ₂ -C ₃	3.132 Å
K ₂ -C ₄	2,967 Å
K ₂ -C ₅	2.965 Å
K ₂ -C _C	3.264 Å
C ₄ -Si ₄	1.876 Å
C ₅ -Si ₅	1.876 Å
C ₆ -Si ₆	1.865 Å
Si ₆ -C _D	1.917 Å
Zn ₂ -C ₄	2.061 Å
Zn₂-C₅	2.059 Å
Zn_2-C_6	2.037 Å

K ₃ -C ₆	3.145 Å
K ₃ -C ₇	2.938 Å
K ₃ -C ₉	2.933 Å
K ₃ -C _D	3.305 Å
C ₇ -Si ₇	1.872 Å
C ₈ -Si ₈	1.872 Å
C ₉ -Si ₉	1.860 Å
Zn ₃ -C ₇	2.073 Å
Zn ₃ -C ₈	2.075 Å
Zn ₃ -C ₉	2.012 Å

E = -11174.4271974 a.u.

1. W. Clegg, B. Conway, A. R. Kennedy, J. Klett, R. E. Mulvey and L. Russo, *European Journal of Inorganic Chemistry* 2011, 721.

2. a) B. Conway, D. V. Graham, E. Hevia, A. R. Kennedy, J. Klett and R. E. Mulvey, *Chemical Communications* 2008, 2638; b) W. Clegg, B. Conway, D. V. Graham, E. Hevia, A. R. Kennedy, R. E. Mulvey, L. Russo and D. S. Wright, *Chemistry – A European Journal*, 2009, **15**, 7074.

3. CrysAlisPro; Oxford Diffraction: Oxford, UK 2008.

4. G. M. Sheldrick, Acta Crystallogr Sect A, 2008, 64, 112–122.

5. D. M. Grant and R. K. Harris, *Encyclopedia of nuclear magnetic resonance*, Eds. Wiley, New York, 1996, pp. 2813 - 2818.

6. W. Kohn, A. D. Becke and R.G. Parr, J. Phys. Chem., 1996, 100, 12974.

7. Gaussian 03, Revision B.O.5, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

8. a) A.D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; b) C.T. Lee, W.T. Yang and R.G.Parr, *Phys.Rev. B*, 1998, **37**, 785.

9. a) W. J. Hehre, R. Ditchfield, and J. A. Pople, *J. Chem. Phys.*, 56, 2257 (1972). b) P. C. Hariharan and J. A. Pople, Theo. Chim. Acta 28, 213 (1973).