Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting information

Table	S1.	IR	spectra	of	starting	In(Cl)(Pc),	TBABr	and	TEABr,	and	
$(TBA^{+})_{3}(C_{60}^{\bullet-})\{In(Br)(Pc)^{\bullet-}\}(Br^{-})\cdot C_{6}H_{4}Cl_{2} (1) \text{ and } (TEA^{+})_{2}(C_{60}^{\bullet-})\{In(Br)(Pc)^{\bullet-}\}\cdot C_{6}H_{4}Cl_{2}\cdot C_{6}H_{14} (2).$											

Components	In(Cl)(PC)	TBABr	TEABr	C ₆₀	$(TBA^{+})_{3}(C_{60}^{\bullet-})$	$(TEA^{+})_{2}(C_{60}^{\bullet-})$
					$\{In(Br)(Pc)^{\bullet-}\}(Br^{-})$	$\{In(Br)(Pc)^{\bullet-}\}$
					$\cdot C_6 H_4 Cl_2 (1)$	$\cdot C_{6}H_{4}Cl_{2}\cdot C_{6}H_{14}(2)$
In(Br)(Pc)	438w				436w	436w
	498w				496w	496w
	635w				637w	-
	724s				714s	714s
	749m				746s*	746s*
	771m				766m	769m
	885m				883m*	878w
	1059m				1059m*	1034m
	1084s				1094m	1091m
	1118s				1116s*	1113s
	1285m				1262m	1262s
	1332s				1287m*	1287w
	1473m				1324s*	1325w*
	1610w				1485w*	1468w
	3045w				1602w	1630m
					3044w	3040
Cation ⁺		738s	786s		746s*	-
		882s	800s		883m*	801s
		896s	1001s		-	999m
		921s	1173s		-	1168m
		992m	1187m		1002w	1183w*
		1031m	1333w		1032m*	1325w*
		1059m	1374m		1059m*	-
		1070m	1397m		-	-
		1109s	1404m		1116s*	-
		1166s	1439m		1168m	-
		1239m	1494s		1262m*	1498w
		1324m	2950m		1324s*	2927w
		1365m	2984m		-	2967w
		1397s			1380s	
		1406m			1417w*	
		1464m			1456s	
		1475s			1485w*	
		2874s			2871m	
		2919m			2930m	
		2960s			2959m	
C				50.6	516	
C_{60}				526s	516w	-
				576m	5755	5/58
				1182m	-	1183W*
				1429s	13918	13918
				657	657	657
$C_6\Pi_4Cl_2$				03/W 749~	03/W 746~*	03/W 746~*
$C_6\Pi_{14}$				/485 1020m	/405 ^{**} 1022***	/405**
				1050m 1452m	1052m* 1456a	1054m 1456a*
				1455111	14308	14305

* - bands coincided, w - weak, m -middle, s - strong intensity

IR-spectra

Fig. 1S. IR-spectrum of starting In(Cl)(Pc) and salt $(TBA^+)_3(C_{60}^{\bullet-})\{In(Br)(Pc)^{\bullet-}\}(Br^-)\cdot C_6H_4Cl_2$ (1) in the 400-1600 cm⁻¹ range in KBr pellets. The KBr pellet of 1 was prepared in anaerobic condition.

Fig. S2. Temperature dependencies of parameters of EPR signal for polycrystalline **2**: *g*-factor (a), linewidth (b) and integral intensity (c). "*T*" marks temperature of splitting of EPR signal into two lines. Fitting of temperature dependence of integral intensity (black curve, c) by the Curie-Weiss law with Weiss temperature of +7.6 K is shown by red curve.