Magnetically Stabilized $Fe_8(\mu_4-S_6)S_8$ Clusters in $Ba_6Fe_{25}S_{27}$

Timothy E. Stacey, Christopher K. H. Borg, Peter J. Zavalij, and Efrain E. Rodriguez*

Department of Chemistry, University of Maryland-College Park, College Park, MD 20742

April 7, 2014

Supporting Information

0.1 Density Functional Theory Calculations

For all Density Functional Theory calculations, the Vienna Ab initio Simulation Package (VASP)¹⁻⁴ was employed, using Generalized Gradient Approximation and Projector Augmented Wave potentials. These calculations include geometrical optimization of crystal structures, band energies, and density of states (DOS) distributions. For the pentlandite calculations (M_9S_8 , where M=Fe,Co,Ni), all crystal structures underwent geometrical optimization before static calculations to discern the band structures and DOS distributions of each compound. Geometrical optimization was performed in a two step process: (1) optimization of the atomic placement, and then (2) optimization of all structural parameters. K-point meshes and energy cutoffs for these calculations are provided in Table S1. Projected DOS curves were calculated through using the PAW method, specified by LORBIT=11.

Stochiometry	Structure type	k-point meshes	Energy cutoff (eV)
$\mathrm{Fe}_9\mathrm{S}_8$	pentlandite	9x9x9, 11x11x11, 13x13x13	360
$\mathrm{Co}_9\mathrm{S}_8$	pentlandite	9x9x9, 11x11x11, 13x13x13	360
$\mathrm{Ni}_9\mathrm{S}_8$	pentlandite	9x9x9, 11x11x11, 13x13x13	360
$\mathrm{Ba}_{6}\mathrm{Fe}_{25}\mathrm{S}_{27}$	djfisherite	5x5x5	280
$\mathrm{Ba}_{6}\mathrm{Fe}_{25}\mathrm{S}_{27}$	djfisherite	5x5x5	280
$\mathrm{Ba}_{6}\mathrm{Fe}_{25}\mathrm{S}_{27}$	djfisherite	5x5x5	280
BaS	CsCl-type	9x9x9	280

Table S1. Details of D1 1 Calculations
LADIE SI. Details OF DE L'ACTUATIONS

*Author to whom correspondence should be addressed: efrain@umd.edu.

0.2 Hückel Theory Calculations

All Hückel calculations performed in this Article employed the YAeHMOP package.⁵ Each input file specified keywords DIAGWO and NONWEIGHTED, which engages the simple Hückel form of the calculation and turns off the use of counterintuitive orbital mixing correction, respectively.⁶ To obtain Hückel parameters that are reflective of the GGA-DFT result, Hückel band energies and projected DOS distributions were refined against a single point energy GGA-DFT calculation. This process was accomplished using *eHtuner*,⁷ which uses a Nelder-Mead optimization of the parameters for a least squared fitting of both the band energies and the projected DOS curves (up to 1 eV above the Fermi energy). The resulting parameters are listed in Table S2.

Table S2. DFT-calibrated Hückel parameters.

Compound, RMS deviation [*]	Atom	Orbital	H_{ii} (eV)	c_1	$\zeta_1 \ (\mathbf{a}_o^{-1})$	c_2	$\zeta_2 (\mathbf{a}_o^{-1})$
$Ba_6Fe_{25}S_{27}, 0.070978 \text{ eV}$	Ba	Ba $5s$	-33.789		3.9288		
		Ba $5p$	-18.937		3.3029		
		Ba $5d$	-4.507	1.7838	3.1779	0.5192	1.2459
	Fe	Fe $4s$	-0.237		2.0286		
		Fe $4p$	1.039		1.9126		
		Fe $3d$	-7.978	0.5680	5.4336	0.7164	2.1525
	S	S $3s$	-16.267		2.3651		
		S $3p$	-8.491		1.8969		
${\rm Ba}_{6}{\rm Co}_{25}{\rm S}_{27}, 0.079546~{\rm eV}$	Ba	Ba $5s$	-34.140		3.7086		
		Ba $5p$	-19.066		2.9853		
		Ba $5d$	-4.830	0.9612	3.0421	1.0774	1.6980
	Co	Co $4s$	-1.630		1.8717		
		Co $4p$	-0.607		1.8432		
		Co $3d$	-8.303	0.5680	6.5101	0.3895	1.9300
	\mathbf{S}	S $3s$	-17.002		3.1935		
		S $3p$	-8.053		2.0242		
$Ba_6Ni_{25}S_{27},0.080607~eV$	Ba	Ba $5s$	-33.786		3.7234		
		Ba $5p$	-18.952		3.1493		

Parameter table continued on next page

^{*}RMS deviation: root-mean-squared deviation between the GGA-DFT and Hückel energies fit to DFT results, considering all occupied valence bands up to the Fermi energy (E_F plus some additional low-lying unoccupied bands (usually up to 1 eV above E_F).

Compound, RMS deviation	Atom	Orbital	\mathbf{H}_{ii} (eV)	c_1	$\zeta_1 \ (\mathbf{a}_o^{-1})$	c_2	$\zeta_2 (\mathbf{a}_o^{-1})$
		Ba $5d$	-6.105	1.4911	2.9805	0.9693	1.5244
	Ni	Ni $4s$	-1.186		2.1489		
		Ni $4p$	-0.401		1.9329		
		Ni $3d$	-8.924	0.5680	5.3907	0.4221	2.1385
	\mathbf{S}	S $3s$	-15.641		2.4180		
		S $3p$	-8.120		1.9558		
$Fe_9S_8, 0.150080 \text{ eV}$	Fe	Fe $4s$	-0.716		1.9988		
		Fe $4p$	0.758		1.9603		
		Fe $3d$	-8.701	0.5680	5.3964	0.3959	1.8499
	\mathbf{S}	S $3s$	-15.189		2.3919		
		S $3p$	-7.540		1.9144		
$Co_9S_8, 0.088563 \text{ eV}$	Co	Co $4s$	-2.566		1.9344		
		Co $4p$	-1.942		2.0057		
		Co $3d$	-8.604	0.5680	6.1447	0.3950	1.8939
	\mathbf{S}	S $3s$	-15.515		3.0517		
		S $3p$	-7.559		2.1107		
$Ni_9S_8, 0.079158 \text{ eV}$	Ni	Ni $4s$	-2.015		1.9293		
		Ni $4p$	-1.364		2.0598		
		Ni $3d$	-8.893	0.5680	6.5810	0.4429	2.0936
	\mathbf{S}	S $3s$	-17.107		3.3679		
		S $3p$	-7.451		1.9866		
Ba ₁ S $_1, 0.101675 \text{ eV}$	Ba	Ba $5s$	-34.228		4.1800		
		Ba $5p$	-19.464		2.8570		
		Ba $5d$	-6.735	0.1911	2.5236	0.0049	0.4779
	\mathbf{S}	S $3s$	-18.249		2.5494		
		S $3p$	-8.856		2.2070		

References

- [1] Kresse, G.; Hafner, J. Phys. Rev. B **1993**, 47, 558–561.
- [2] Kresse, G.; Hafner, J. Phys. Rev. B ${\bf 1994},\, 49,\, 14251{-}14269.$

- [3] Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1995, 6, 15–50.
- [4] Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186.
- [5] Landrum, G. A. YAeHMOP: Yet Another extended Hückel Molecular Orbital Package, Version 3.0.;
 YAeHMOP is freely available on the WWW at URL: http://sourceforge.net/projects/yaehmop/.
- [6] Ammeter, J. H.; Bürgi, H.-B.; Thibeault, J. C.; Hoffmann, R. J. Amer. Chem. Soc. 1978, 100, 3686–3692.
- [7] T. E. Stacey and D. C. Fredrickson, Dalton Trans. 2012, 41, 7801-7813.