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General Procedures and Physical Measurements

All chemicals and solvents used for the syntheses were of reagent grade. The solvents for
synthesis were used without further purification. All manipulations were performed in air.
[Au,L,](NO3), was prepared according to a published procedure." Mechanochemical reactions
were performed by a Retsch MM400 shaker mill in a 5 mL agate jar with two 7 mm diameter
agate balls operating at 25 Hz. The elemental analysis has been carried out with an Elementar
Vario EL III apparatus. Infrared spectra were recorded in the 400 to 4000 cm™" spectral range on
a Varian 2000 FT-IR spectrometer equipped with Golden Gate single reflection diamond ATR
(Specac Ltd.). Optical micrographs were recorded with a Nikon Eclipse LV100 microscope
equipped with Nikon DS-Fi2 digital camera (Auro-Science Consulting Kft., Budapest,
Hungary). Steady state and time-resolved luminescence measurements were carried out on an
Edinburgh Instrument FLSP920 spectrofluorimeter. Spectral corrections were applied using
excitation and emission correction functions of the instrument. The solid-state room temperature
emission studies were conducted on finely ground powder samples placed on a Quartz Suprasil
plate in a front face sample holder. Longpass filters were used to exclude the scattered excitation
light. The excitation light source was a pF900H xenon flashlamp (pulse duration: 2 ps at
FWHM) for the luminescent lifetime measurements. Powder diffractograms were produced with

Cu-K, radiation on a vertical high-angle Philips PW 1050 powder diffractometer.

Dichloromethane-assisted mechanochemical synthesis of crystalline c-[Au;L,](X); and
water-assisted mechanochemical synthesis of amorphous a-|Au,L;](X); (X = CF3S03, SCN,
BF4 and PFg) digold(I) helicates

The mechanochemical anion-exchange reactions were performed by ball-milling compound
[Au,L,](NO3), (335 mg, 0.2 mmol) with NaX salts in a 1:2 (X = CF3S0;, SCN, BF,4 and PFy)
molar ratio with Retsch MM400 shaker mill in a 5 mL agate jar with two 7 mm diameter agate
balls with 120 pL dichloromethane or 80 pL of water, respectively. The mixture was then
ground for 5 minutes at 25 Hz. The mechanochemical reactions produce a powder mixture
containing anion-exchanged products [Au,L;](X), and NaNOs, which after thorough washing
with water provided pure anion-exchanged [Au,L;](X), helicates. The dichloromethane assisted
grinding reactions lead to crystalline c-[Au,L,](X), compounds, in contrast to water assisted

grinding that provided amorphous a-[ Au,L,](X), products.
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Optical microscopic graphs of these anion-exchanged crystalline c-[Au,L,](X), and amorphous
a-[Au;](X), (X = CF3S0;, SCN, BF,4 and PFg) products are shown in Figures S1 and S2,
respectively. FT-IR spectra, emission (Aex = 365 nm) and excitation spectra and the PXRD
patterns of crystalline c-[Au;L,](X), and amorphous a-[Au,L,;](X), complexes (X = CF;SOs3,
SCN, BF, and PFy) are given in Fig.S3—S18. Emission, excitation characteristics and lifetimes of
crystalline c-[Au,L,](X); and amorphous a-[ Au,L;](X), complexes (X = CF3S0;, SCN, BF4 and
PF) are listed in Table S1.

Fig. S1 Optical microscopic graphs of crystalline a) c-[ Au,L,](CF3S0s3),, b) c-[AuLa[(SCN)y,
¢) c-[Au, L, (BF4), and d) c-[ Au, L, ] (PFs), helicates obtained from dichloromethane-assisted
grinding reactions.
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Fig. S2 Optical microscopic graphs of amorphous a) a-[ Au,L,](CF3S0s3),, b) a-[ AuaL,](SCN),,
¢) a-[Au,L;](BF4), and d) a-[ Au,L;](PFs), helicates obtained from water-assisted grinding
reactions.
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Crystalline c-[Au;L;](CF3S03);

IR data: 3078 (w), 2967 (w), 1607 (w), 1584 (w), 1480 (w), 1437 (m), 1404 (s), 1257 (s), 1222
(s),1147 (s), 1096 (m), 1029 (s), 999 (m), 874 (w), 742 (m), 688 (m), 635 (m); Elemental

analysis calcd. (%) for c-[ Au,L,](CF3S03),: C 51.96, H 3.49; found: C 51.48, H 3.53.
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Fig. S3 FT-IR spectra of crystalline c-[Au,L,](CF3SO0s3), complex.

Amorphous a-[Au;L;](CF3S03);

IR data: 3492 (b, w), 3075 (w), 2978 (w), 1609 (w), 1586 (w), 1481 (w), 1437 (m), 1403 (s),
1259 (s), 1221 (s), 1149 (s), 1097 (m), 1029 (s), 999 (m), 873 (w), 742 (m), 689 (m), 635 (m);
Elemental analysis calcd. (%) for a-[Au,L,](CF3S0O;),-1.5 H,O: C 51.21, H 3.60; found: C

51.30, H 3.76.
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Fig. S4 FT-IR spectra of amorphous a-[Au,L;](CF3S03), complex.

S-5



Normalised intensity

300 400 500 600 700 800
Wavelength (nm)

Fig. S5 Emission (solid lines) and excitation (dashed lines) spectra of
crystalline c-[Au,L;](CF3S03), (blue coloured) and amorphous a-[Au,L,](CF3S03), (red
coloured) helicates.
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Fig. S6 PXRD patterns of crystalline c-[ Au,L,](CF3S0O3); (blue coloured) and
amorphous a-[ Au,L,](CF3S0s3); (red coloured) complexes.
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Crystalline c-[Au,L,](SCN),

IR data: 3445 (vw), 3057 (w), 2970 (w), 2108 (s), 1480 (w), 1434 (m), 1404 (s), 1230 (m), 1097
(m), 999 (w), 737 (m), 687 (m); Elemental analysis calcd. (%) for c-[Au,;L,](SCN),: C 57.63, H

3.87, N 1.68; found: C 57.98, H3.92, N 1.71.
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Fig. S7 FT-IR spectra of crystalline c-[Au,L,](SCN), complex.

Amorphous a-[Au,L;](SCN),

IR data: 3408 (b, w), 3056 (w), 2974 (w), 2099 (s), 2052 (w), 1607 (w), 1586 (w), 1480 (w),
1435 (m), 1402 (s), 1222 (m), 1097 (m), 741 (m), 689 (m); Elemental analysis calcd. (%) for a-
[AuL1](SCN),-3 HyO: C 55.82, H 4.10, N 1.63; found: C 55.82, H 4.08, N 1.49.
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Fig. S8 FT-IR spectra of amorphous a-[Au,L,](SCN), complex.
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Fig. S9 Emission (solid lines) and excitation (dashed lines) spectra of
crystalline c-[Au,L,](SCN), (blue coloured) and amorphous a-[ Au,L;](SCN), (red coloured)
helicates.
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Fig. S10 PXRD patterns of crystalline c-[ Au,L,](SCN); (blue coloured) and
amorphous a-[ Au;L,](SCN); (red coloured) complexes.
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Crystalline Cc- [Allsz] (BF4)2

IR data: 3645 (w), 3077 (w), 2975 (w), 2165 (w), 1607 (w), 1586 (w), 1480 (w), 1436 (m), 1402
(s), 1216 (m), 1097 (m), 1057 (m), 1036 (m), 998 (m), 870 (w), 744 (m), 688 (m); Elemental
analysis calcd. (%) for c-[Au,L,](BF4),-0.5 H,O: C 54.03, H 3.78; found: C 53.98, H 3.90.
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Fig. S11 FT-IR spectra of crystalline c-[Au,L,](BF4), complex.

Amorphous a-[Au,L;]|(BF4),
IR data: 3626 (b, w), 3061 (w), 2976 (w), 2165 (w), 1608 (w), 1585 (w), 1480 (w), 1436 (m),

1402 (s), 1219 (m), 1052 (s), 997 (m), 872 (w), 742 (m), 689 (m); Elemental analysis calcd. (%)
for a-[Au,L,](BF4),-1.5 H,O: C 53.48, H 3.86; found: C 53.66, H 3.90.
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Fig. S12 FT-IR spectra of amorphous a-[ Au,L;](BF4), complex.
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Fig. S13 Emission (solid lines) and excitation (dashed lines) spectra of
crystalline c-[ Au,L,](BF4), (blue coloured) and amorphous a-[Au,L,](BF4), (red coloured)
helicates.
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Fig. S14 PXRD patterns of crystalline c-[Au,L,](BF4), (blue coloured) and
amorphous a-[ Au,L,](BF4); (red coloured) complexes.
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Crystalline c-[Au,L;|(PFg);

IR data: 3653 (w), 3409 (b, w), 3076 (w), 2981 (w), 1609 (w), 1481 (w), 1437 (m), 1403 (s),
1218 (m), 1099 (m), 999 (w), 829 (s), 787 (m), 740 (m), 711 (m), 688 (m), 556 (m); Elemental
analysis calcd. (%) for c-[Au,L,](PFs),-1.5 H,O: C 50.15, H 3.61; found: C 50.11, H 3.61.
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Fig. S15 FT-IR spectra of crystalline c-[Au,L;](PF¢), complex.

Amorphous a-[Au,L,](PFs)»

IR data: 3660 (w), 3433 (vw), 3074 (w), 2978 (w), 1609 (w), 1586 (w), 1481 (w), 1437 (m),
1403 (s), 1219 (m), 1098 (m), 1000 (w), 831 (s), 786 (m), 740 (m), 688 (m), 556 (m) 513 (wW);
Elemental analysis calcd. (%) for a-[Au,L;](PFe),: C 50.88, H 3.50; found: C 50.91, H 3.77.
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Fig. S16 FT-IR spectra of amorphous a-[Au,L,](PFs), complex.
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Fig. S17 Emission (solid lines) and excitation (dashed lines) spectra of
crystalline c-[Au,L,](PF¢), (blue coloured) and amorphous a-[ Au,L,](PF¢) (red coloured)
helicates.
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Fig. S18 PXRD patterns of crystalline c-[ Au,L,](PFs), (blue coloured) and
amorphous a-[ Au,L,](PF); (red coloured) complexes.
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Table S1 Emission, excitation characteristics and lifetimes of crystalline c-[Au,L;](X),
and amorphous a-[Au,L,](X), (X = CF3S0s, SCN, BF,4 and PFg) helicates.

Compound Aem (NM) Aex (NM) T (us) T, (us)

c-[Au,L,](CF;3S0;3), 460 sh, 525 280, 355, 381 2.5 (73%) 15 (27%)
a-[Au,L,](CF;3S03), 670 277,340 3.1 (34%) 14 (66%)
c-[Au,L,](SCN), 508 285, 326, 368 0.3 (52%) 5.9 (48%)
a-[Aw,L,](SCN), 570 279,322 sh,368 1.2 (46%) 8.9 (54%)
c-[Au,L,](BFy), 447 sh, 457,482 sh  279,334,355sh 3.8 (34%) 16 (66%)
a-[Aw,L,](BFy), 685 280, 338 3.9 (35%) 14 (65%)
c-[Au,L,](PFg), 675 279, 333 2.7 (32%) 13 (68%)
a-[Au,L,](PFg), 682 276, 338 4.5 (37%) 15 (63%)




General procedure for reversible crystalline-to-amorphous (CTA) and amorphous-to-
crystalline (ATC) transformations achieved by solvent-assisted ball-milling

Reversible CTA/ATC transformations were performed using 0.05 mmol of crystalline or
amorphous [AuL,](X), (X = CF3S03 and BF,) samples placed into 5 mL agate jar with two 7
mm diameter agate balls. 20 pL of water (for CTA transformation) or 30 pL. dichloromethane
(for ATC transformation) was added into the jar and the sample was ground with a Retsch
MM400 shaker mill operating at 25 Hz for the specified time. The crystalline c-
[Au,L,](CF3S03); and c-[Au,L,](BF4), helicates were amorphized by mechanical milling (CTA
phase transformation) after 10 and 60 minutes, respectively. After 2 and 3 minutes of ball-
milling with dichloromethane, these amorphous a-[Au,L,](CF3SOs), and a-[Au,L,](BF4),

materials were converted back into their crystalline counterparts (ATC transformation).

The emission spectra (Aex = 365 nm) of amorphous a-[Au;L;](X), (X = CF3SO3; and BF,)
obtained from CTA transformation and crystalline c-[Au,l,](X), (X = CF3;SO; and BF,)
obtained from ATC transformation are given in Fig. S19 and Fig. 4 (see manuscript). Their
emission characteristics and lifetimes are listed in Tables S2 and S3. The corresponding PXRD

patterns are given in Fig. S20 and S21.
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Fig. S19 Emission spectra of the crystalline c-[ Au,L;](CF3S03), obtained from
dichloromethane-assisted LAG (solid blue line), amorphous a-[Au,L,](CF3SOs), obtained from
CTA transformation (dotted red line) and crystalline c-[Au, L, ](CF3SOs3), obtained from ATC
transformation (dotted blue line).
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Table S2 Emission, excitation characteristics and lifetimes of crystalline c-[ Au,L;](CF3S03),
obtained from dichloromethane-assisted LAG and c-[Au,L,;](CF3S0O3), obtained from ATC
transformation, as well as amorphous a-[Au,L,](CF3SOs3), obtained from CTA transformation
and a-[Au,L,](CF3S0s3), obtained from water-assisted LAG.

Compound Aem (NM) T, (us) T, (us)

c-[Au,L,](CF;3S803), 460 sh, 525 2.5 (73%) 15 (27%)
c-[Au,L,](CF5S03), from ATC 463 sh, 521 2.4 (66%) 17 (34%)
a-[Aw,L,](CF;S0;), from CTA 670 3.8 (37%) 16 (63%)
a-[Au,1,](CF;S03), 670 3.1 (34%) 14 (66%)

Intensity (a.u.)
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Fig. S20 PXRD patterns of a) crystalline c-[ Au,L,](CF3S0O3), obtained from dichloromethane-
assisted LAG (blue coloured), b) amorphous a-[Au,L,](CF3SOs3), obtained from CTA
transformation (red coloured) and c) crystalline c-[ Au,L,](CF3S0s3), obtained from ATC
transformation (blue coloured).
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Table S3 Emission, excitation characteristics and lifetimes of crystalline c-[Au,L,](BF4),
obtained from dichloromethane-assisted LAG and c-[Au;Ll;](BF4), obtained from ATC
transformation, as well as amorphous a-[Au,L;](BF4), obtained from CTA transformation and a-
[Au,L,](BF,), obtained from water-assisted LAG.

Compound Aem (NM) T (us) T, (us)

c-[Au,L,](BFy), 447 sh, 457,482 sh 3.8 (34%) 16 (66%)
c-[Aw,L,](BF,), from ATC 445 sh, 457,483 sh 3.7 (29%) 14 (71%)
a-[Au,L,](BFy), from CTA 692 3.9 (33%) 15 (67%)
a-[Au,1,](BF,), 685 3.9 (35%) 14 (65%)
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Fig. S21 PXRD patterns of a) crystalline c-[ Au,L;](BF4), obtained from dichloromethane-
assisted LAG (blue coloured), b) amorphous a-[Au,L,](BF4), obtained from CTA
transformation (red coloured) and c) crystalline c-[ Au,L;](BF4), compound obtained from ATC
transformation (blue coloured).
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[Au;L;](X), (X = CF3S0;3, SCN, BFs and PF¢) digold(I) helicates obtained from
conventional solution-based anion-exchange

Further anion-exchange reactions were also performed in solution. Thus, NaX (X = CF3;SOs,
SCN, BF,4 and PFy) salts (0.6 mmol) were suspended in a 20 mL dichloromethane solution of
[AuL,](NO3), (335 mg, 0.2 mmol). This mixture was stirred for 6 hours, shielded from light.
The as-resulting suspension was filtered through Celite, and the solvent was removed under
vacuum to give the anion-exchanged [Au,L,](X), products as white powders. Yields: 312 mg
(84.3%) for X = CF3S0s3; 274 mg (82.2%) for X = SCN; 263 mg (76.2%) for X = BF4 and 302
mg (82.0%) for X = PF.

Optical micrographs of anion-exchanged [AuwL,](X), (X = CF3;SOs;, SCN, BF, and PFy)
helicates are shown in Figure S22. Photographs taken under hand held UV lamp (365 nm)
illumination showing the solid-state emission colour of anion-exchanged [Au,L,](X), (X =
CF;S0s, SCN, BF, and PFg) helicates are given in Figure S23. FT-IR, emission (Aex = 365 nm)
and excitation spectra and the PXRD patterns of anion-exchanged [Au,L,](X), complexes (X =
CF3S0s, SCN, BF,4 and PFg) are given in Fig. S24-S35. Emission, excitation characteristics and

lifetimes are listed in Table S4.

The anion-exchange process was confirmed by the disappearance of strong band associated with
nitrate anion at 1344 cm ', and appearance of characteristic bands associated with the
exchanged-anions, such as ftriflate at 1259 and 1029 cmfl, thiocyanate at 2107 cmfl,
tetrafluoroborate at 1048 cm ' and hexafluorophosphate at 832 cm ™' in the IR spectra of the
corresponding [Au;L,](X), compounds. As revealed by PXRD, this process afforded one
crystalline c-[Au,L,](SCN), and three amorphous a-[Au,L;](X), (X = CF3S80;, BF4 and PFy)

digold(I) helicates.
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Fig. S22 Optical microscopic graphs of a) a-[Au,L;](CF3S03),, b) c-[Au,L;](SCN),,
c) a-[AuyL,](BF4); and d) a-[Au,L,](PFe), helicates obtained from conventional solution-based
process.

a)

c) d)

Fig. S23 Photographs taken under hand held UV lamp (365 nm) illumination showing the solid-
state emission colour of a) a-[Au,L,](CF3S03),, b) c-[Aus L2 [(SCN),, ©) a-[Au, L, (BF4); and d)
a-[ Au,L,](PFs), helicates obtained from conventional solution-based process.



Amorphous a-[Au;L;](CF3;S03); helicate obtained from conventional anion-exchange

reaction

IR data: 3495 (b, w), 3064 (w), 2978 (w), 1609 (w), 1586 (w), 1481 (w), 1437 (m), 1403 (s),
1259 (s), 1221 (s), 1146 (s), 1097 (m), 1029 (s), 999 (m), 874 (w), 741 (m), 688 (m), 634 (m);
Elemental analysis calcd. (%) for a-[Au,L,](CF3S03),: C 51.96, H 3.49; found: C 51.65, H 3.74.
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Fig. S24 FT-IR spectra of amorphous a-[ Au,L;](CF3S03), complex obtained from conventional

anion-exchange reaction.
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Fig. S25 Emission and excitation spectra of amorphous a-[ Au,L,](CF3S03), helicate obtained

from conventional anion-exchange reaction.
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Fig. S26 PXRD patterns of amorphous a-[Au,L,](CF3SOs3), complex obtained from

conventional anion-exchange reaction.
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Crystalline c-[Au;L;](SCN); helicate obtained from conventional anion-exchange reaction

IR data: 3446 (vw), 3056 (W), 2975 (w), 2107 (s), 1480 (w), 1434 (m), 1404 (s), 1230 (m), 1097

(m), 999 (w), 737 (m), 688 (m); Elemental analysis calcd. (%) for c-[Au,;L,](SCN),: C 57.63, H
3.87, N 1.68; found: C 57.46, H 3.88, N 1.41.
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Fig. S27 FT-IR spectra of crystalline c-[Au,L;](SCN), complex obtained from conventional
anion-exchange reaction.
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Fig. S28 Emission and excitation spectra of crystalline c-[Au,L,](SCN), helicate obtained from
conventional anion-exchange reaction.
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Fig. S29 PXRD patterns of crystalline c-[ Au,L,](SCN), complex obtained from conventional
anion-exchange reaction.
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Amorphous a-[Au,L;](BF4); helicate obtained from conventional anion-exchange reaction

IR data: 3634 (w), 3064 (W), 2976 (w), 2165 (w), 1609 (w), 1586 (w), 1481 (w), 1437 (m), 1402

(s), 1220 (m), 1048 (s), 997 (m), 873 (w), 741 (m), 688 (m); Elemental analysis calcd. (%) for a-
[AuL1](BF4),: C 54.32, H 3.74; found: C 54.27, H 4.00.
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Fig. S30 FT-IR spectra of amorphous a-[ Au,L;](BF4), complex obtained from conventional
anion-exchange reaction.
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Fig. S31 Emission and excitation spectra of amorphous a-[ Au,L,](BF4), helicate obtained from
conventional anion-exchange reaction.
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Fig. S32 PXRD patterns of amorphous a-[Au,L,](BF4), complex obtained from conventional
anion-exchange reaction.
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Amorphous a-[Au;L;](PFs), helicate obtained from conventional anion-exchange reaction

IR data: 3076 (w), 2977 (W), 2325 (w), 1635 (w), 1606 (w), 1587 (w), 1481 (w), 1437 (m), 1402

(s), 1219 (m), 1098 (m), 999 (w), 832 (s), 786 (m), 741 (m), 688 (m), 556 (m); Elemental
analysis calcd. (%) for a-[Au, L, ](PFe),: C 50.88, H 3.50; found: C 50.60, H 3.78.
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Fig. S33 FT-IR spectra of amorphous a-[ Au,L;](PF¢), complex obtained from conventional
anion-exchange reaction.
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Fig. S34 Emission and excitation spectra of amorphous a-[ Au,L,](PFs), helicate obtained from
conventional anion-exchange reaction.
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Fig. S35 PXRD patterns of amorphous a-[Au,L,](PFe), complex obtained from conventional
anion-exchange reaction.
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Table S4 Emission, excitation characteristics and lifetimes of crystalline c-[Au,L,](X), (X
= SCN) and amorphous a-[ Au,L,](X), (X = CF3S0s;, BF4 and PF) helicates obtained from
conventional solution-based anion-exchange reaction.

Compound Aem (nM) Aex (nM) 71 (us) T, (us)

a-[Au,L,](CF580;), 683 280, 344 3.0 (36%) 13 (64%)
c-[Au,L,](SCN), 506 284,318, 362 0.4 (63%) 5.4(37%)
a-[Au,L,](BF,), 672 280, 341 2.9 33%) 13 (67%)
a-[Au,L,](PFy), 678 275,339 3.6 (34%) 15 (66%)
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