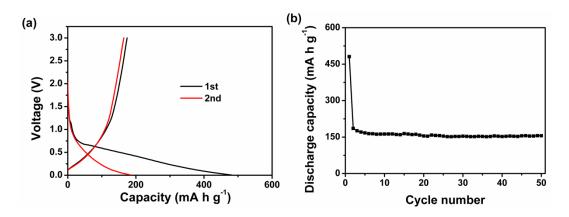

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries


Taiqiang Chen^a, Likun Pan*a, T.A.J. Loh^b, D.H.C. Chua^b, Yefeng Yao^a, Qun Chen^a, Dongsheng Li^a, Wei Qin^a and Zhuo Sun^a

^a Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, China, Fax: +86 21 62234321; Tel: +86 21 62234132; E-mail: lkpan@phy.ecnu.edu.cn

^b Department of Materials Science and Engineering, National University of Singapore
117574, Singapore

Figure S1 XRD pattern of carbon spheres thermally treated at 900 °C for 2 h in a nitrogen atmosphere.

Figure S2 (a) The first and second charge/discharge curves and (b) cycle performance of carbon spheres thermally treated at 900 $^{\circ}$ C for 2 h in a nitrogen atmosphere at a current density of 50 mA g⁻¹.