Pyrophosphate Selective Fluorescent Chemosensor: A Cascade Recognition of Nuclear Stain Mimicking DAPI

Shyamaprosad Goswami^a*, Avijit Kumar Das^a, Bholanath Pakhira^a, Sohini Basu Roy^a, Anup Kumar Maity^b, Partha Saha^b and Sabyasachi Sarkar^a

^aDepartment of Chemistry, Bengal Engg. and Science University, Shibpur, Howrah-711 103, INDIA.

Fax: +91 33 2668 2916; *Tel:*+91 33 2668 2961-3; *E-mail:* <u>spgoswamical@yahoo.com</u> ^b Crystallography and Molecular Biology Division, Saha Institute of Nuclaer Physics, Kolkata 700064, West Bengal, India

CONTENTS

1.	General procedure for drawing Job plot by Fluorescence method2
2.	Association constant determination2-3
3.	Determination of equilibrium competition constant of PPi with SPHN-Zn(Recetor
	1)
4.	Calculation of the detection limit4
5.	Uv-Vis and Fluorescent spectra of SPHN with PPi5
6.	Reversibility Experiment6
7.	Partial 1H NMR spectra of (a) SPHN (b) SPHN+Zn ²⁺ complex (Receptor 1). (c)
SP	HN+Zn ²⁺ +PPi6
8.	Truth tables of different gates7
9.	pH titration8
10	. ¹ H NMR (S ₉), ¹³ C NMR (S ₁₀) and Mass spectrum (S ₁₁) of the compound A9-11
11	. ¹ H NMR (S ₁₂), ¹³ C NMR (S ₁₃) and Mass spectrum (S ₁₄) of the compound B
•••	
12	. ¹ H NMR (S ₁₅), ¹³ C NMR (S ₁₆) and Mass spectrum (S ₁₇) of the compound C
•••	
13	. ¹ H NMR (S ₁₈), ¹³ C NMR (S ₁₉) and Mass spectrum (S ₂₀) of the SPHN
•••	
14	. Mass spectrum (S ₂₁) of the Receptor 121
15	. Mass spectrum (S ₂₁) of the Receptor 1+PPi22
16	. Fluorescence titration spectra of SPHN with different guest cations23-25
17	. Kinetics study
18	. Computational Details

General procedure for drawing Job plot by Fluorescence method:

Stock solution of same concentration of **SPHN** and Zn^{2+} were prepared in the order of $\approx 2.0 \text{ x}$ 10⁻⁵ by using CH₃CN-aqueous HEPES buffer (7/3, v/v, 25 °C) at pH =7.4. The intensity in each case with different *host–guest* ratio but equal in volume was recorded. Job plots were drawn by plotting $\Delta I.X_{host}$ vs X_{host} (ΔI = change of intensity of the fluorescent spectrum during titration and X_{host} is the mole fraction of the host).

Figure S₁. Jobs plot diagram of **SPHN** for Zn^{2+} (where X_h is the mole fraction of host and ΔI indicates the change of the emission intensity).

Association constant determination:

The binding constant value of cation Zn^{2+} with the **SPHN** and PPi with **SPHN-Zn** complex has been determined from the emission intensity data following the modified Benesi– Hildebrand equation, $1/\Delta I = 1/\Delta I \max + (1/K[C])(1/\Delta I \max X)$. Here $\Delta I = I$ -Imin and $\Delta I \max Z$ = Imax-Imin, where Imin, I, and Imax are the emission intensities of sensor considered in the absence of guest , at an intermediate concentration and at a concentration of complete saturation of guest where K is the binding constant and [C] is the guest concentration respectively. From the plot of (Imax-Imin)/(I-Imin) against [C]⁻¹ for sensor, the value of K has been determined from the slope. The association constant (K_a) as determined by

fluorescence titration method for **SPHN** with Zn^{2+} is found to be 1 x 10⁵M⁻¹ (error < 10%)

Figure S₂: (a) Benesi–Hildebrand plot from fluorescence titration data of **SPHN** (20 μ M) with Zn²⁺. (b) Benesi–Hildebrand plot from fluorescence titration data of **SPHN - Zn** (20 μ M) with PPi.

Determination of equilibrium competition constant of PPi with SPHN-Zn(Recetor 1):

Solutions of the chemosensing ensemble for competition assays were prepared by using **SPHN-Zn (Recetor 1)** CH₃CN-HEPES buffer (7/3, v/v, pH = 7.4) solution. After standard solutions of PPi weas added to the buffer solution containing the chemosensing ensemble, absorption and emission spectra were measured. The equilibrium competition constant (Kcomp) was calculated based on the titration curve.

$$R-A + P \Leftrightarrow R + P-A$$
$$K_{comp} = ([R][P-A])/([R-A][P])$$

Here, [R] is the concentration of **SPHN**, [R–A] is the concentration of the complex between **SPHN-Zn (Recetor 1).** [P] is the concentration of free PPi and [P–A] is the concentration of the complex between PPi and Zn^{2+} . The fitting of the titration profiles with a non linear leastsquares procedure using a model provides the equilibrium competition constant (Kcomp).¹

$$[P-A] = \frac{A_{T} + P_{T}K_{comp} + A_{T}K_{Comp} - 2(-1 + K_{comp})}{2(-1 + K_{comp})K_{comp} + (A_{T} - P_{T}K_{comp} - A_{T}K_{comp} - R_{T})^{2} + R_{T}}{2(-1 + K_{comp})}$$
$$F = F_{R-A} - \Delta F * [P-A]$$

where F_{R-A} is the fluorescence of **SPHN** - **Zn** (Recetor 1)and DF is the change in fluorescence due to the formation of Zn^{2+} -PPi, A_T is the total concentration of Zn^{2+} , R_T is the total concentration of **SPHN** and P_T is the total concentration of PPi.

Figure S₃: Fitting of competitive titrations of **SPHN** – **Zn** (Recetor 1) chemosensing ensembles with PPi in CH₃CN-HEPES buffer (7/3, v/v, 25 °C) at pH =7.4.

Calculation of the detection limit:

The detection limits DL of **SPHN** for Zn^{2+} and **Receptor 1** for PPi were determined from the following equation¹:

DL = K * Sb1/S

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph Fig.S₃(a), we get slope = 18.034, and Sb1 value is **27.678**.

Thus using the formula we get the Detection Limit for Zn^{2+} to **SPHN** = 4.6 μ M.

From the graph Fig.S₃(b), we get slope = 17.826, and Sb1 value is 36.540.

Thus using the formula we get the Detection Limit for PPi to the SPHN-Zn (Receptor 1) =

Figure S₄: (a) Changes of Fluorescence Intensity of **SPHN** as a function of $[Zn^{2+}]$ at 450 nm.(b) Changes of Fluorescence Intensity of **SPHN-Zn** complex(**Receptor 1**) as a function of [PPi] at 450 nm.

Figure S₅ (a) Uv-Vis spectra of receptor **SPHN** ($c = 2 \times 10^{-5}$ M) in CH₃CN-HEPES buffer (7/3, v/v, 25 ° C) upon titration with PPi ($c = 2 \times 10^{-4}$ M) at pH-7.4. (b) (a) Fluorescence spectra of receptor **SPHN** ($c = 2 \times 10^{-5}$ M) in CH₃CN-HEPES buffer (7/3, v/v, 25 ° C) upon titration with PPi ($c = 2 \times 10^{-4}$ M) at pH-7.4.

Reversibility Experiment:

Figure S₆: (a) Fluorescence intensity changes of **SPHN**($c = 2.0 \times 10^{-5}$ M) in CH₃CN-HEPES buffer (7/3, v/v, 25 ° C) upon alternate addition of Zn²⁺ and PPi($c = 2.0 \times 10^{-4}$ M). (b) UV-vis absorption spectra of **SPHN** ($c = 2.0 \times 10^{-5}$ M) in CH₃CN-HEPES buffer (7/3, v/v, 25 ° C) by alternative addition of Zn²⁺ and PPi($c = 2.0 \times 10^{-4}$ M).

Partial ¹H NMR spectra of (a) SPHN (b) SPHN+Zn²⁺ complex (Receptor 1). (c) SPHN+Zn²⁺ + PPi

Figure S₇. Partial ¹H NMR spectra (400 MHz) of SPHN($c = 2.07 \times 10^{-2}$ M) in CD₃CN:D₂O (7:3) with Zn²⁺ and PPi : (a) free SPHN; (b) SPHN + Zn²⁺; (c) SPHN + Zn²⁺ +PPi.

Truth table of Different Gates:

Not gate

OR gate

0

1 1

- Output

Input_A·

Output

Input_A-

Input_B-

AND gate

YES gate

Figure S₈. Fluorescence intensity of **SPHN** ($c = 2 \times 10^{-5}$ M) at various pH values in water medium in the absence and presence of Zn²⁺ ($c = 2.0 \times 10^{-4}$ M). pH of different solution adjusted by using HClO₄ and NaOH.

¹H NMR spectrum (S₉) of Compound A:

¹³C NMR spectrum (S₁₀) of Compound A:

Mass spectrum (S₁₁) of compound A:

¹H NMR spectrum (S₁₂) of Compound B:

¹³C NMR spectrum (S₁₃) of Compound B:

Mass spectrum (S₁₄) of compound B:

¹H NMR spectrum (S₁₅) of Compound C:

¹³C NMR spectrum (S₁₆) of Compound C:

Mass spectrum (S₁₇) of Compound C:

¹H NMR spectrum (S₁₈) of Compound SPHN:

¹H NMR spectrum of Compound SPHN (expansion mode)

¹³C NMR spectrum (S₁₉) of Compound SPHN:

Mass spectrum (S₂₀) of SPHN:

Mass spectrum (S₂₂) of SPHN- Zn complex (Receptor 1)+ PPi:

Fluorescence titration spectra (S₂₃) of receptor ($c = 2x10^{-5}$ M) with different guest cations ($c = 2x10^{-4}$ M) in CH₃CN-10 mM aqueous HEPES buffer solution (7/3, v/v, 25°C) at pH-7.4 :

Figure S₂₄: Fluorescence spectra of the receptor **SPHN** ($c = 2x10^{-5}$ M) with 4.0 equiv of zinc chloride ($c = 2x10^{-4}$ M) in different proportions of water in CH₃CN at pH =7.4: (a) **SPHN** itself. (b) H₂O/CH₃CN (8/2, v/v); (c) H₂O/CH₃CN (5/5, v/v); (d) H₂O/CH₃CN (4/6, v/v); (e) H₂O/CH₃CN (3/7, v/v).

* The changes of emission curve of SPHN ($c = 2x10^{-5}$ M) at different time interval by addition of $Zn^{2+}(c = 2x10^{-4})$ and calculation of first order rate constant:

Fig S_{25} (a) represents the changes of fluorescence at different time interval by addition of zinc.

From the time vs. fluorescence plot Fig.₂₅ (b) at fixed wavelength at 450 mm by using first order rate equation, we get the rate constant K=slope x $2.303=0.002 \text{ x } 2.303=4.6 \text{ x}10^{-3} \text{ Sec}^{-1}$.

Figure S₂₅: (a) The changes of fluorescence of **SPHN** in presence of Zn^{2+} in CH₃CN- 10 mM aqueous HEPES buffer (7/3, v/v, 25 °C) at pH =7.4. **Inset**-Different time intervals are shown in the rectangle ('S' denotes Second). (b) The first order rate equation by using Time vs. fluorescence plot at 450 nm (I_t=Maximum intensity, I₀ = Initial Intensity).

Computational Details:

Figure S₂₆: UV-VIS spectrum of SPHN

Three electonic transition that was observed in ligand were given below with oscillator strength.

- 1.homo-1 to lumo+1 333.99 nm f=0.0039 2.homo-1 to lumo 350.29 nm f=0.0275
- 3.homo to lumo 438.67 nm f=0.0049

Figure S₂₇: UV-VIS spectra of SPHN – Zn2⁺ complex form TD-DFT calculations.

Form TD-DFT calculations of Zn complex the following electronic tansitions were obberved

- 1. homo-1 to lumo+1 417.79 nm f=0.0450
- 2. homo-4 to lumo 456.17 nm f=0.0080

Pyrophosphate linked compound:

Optimized coordinates of SPHN:

С	-2.53729512	3.96467760	1.78995771
С	-1.13041712	3.96467760	1.78995771
С	-0.46372612	5.19128460	1.78995771
С	-1.21779912	6.36607160	1.78971671
С	-2.62100112	6.26326660	1.78957571
Ν	-3.28053112	5.08831560	1.78976071
Н	0.63481788	5.23106060	1.78900771
Н	-0.57568512	3.01777660	1.79022171
Н	-0.73376312	7.35099560	1.78961571
Ν	-3.46381651	7.46765948	1.78946792
С	-3.80680542	8.07722906	0.61499803
Н	-3.77250556	7.82077206	2.65697466
0	-3.42574049	7.64469155	-0.48633811
N	-3.28993545	2.70196920	1.79012007
С	-3.16872543	1.81940328	2.82693323
Н	-3.88138570	2.51163571	1.02428384
0	-2.42751760	2.04454529	3.79912791
Č	-4 69272372	9 32775822	0 76641001
H	-5 62027276	9 05441392	1 22448824
Н	-4 88213318	9 74963104	-0 19849795
C	-4 01501486	0 53973507	2 69335380
н	-5 05383358	0 79426795	2.075555566
Н	-3 78633167	-0 12493851	3 50008364
N	-4 00385954	10 31739146	1 60723830
N	-3 70984631	-0 11830161	1 41477651
C	-3 39765907	11 18826871	2 34716719
C	-3 97599011	12 60656433	2 50707575
н	-2 49130269	10 92226182	2 84981860
C	-3 23784165	13 70591565	1 98953371
C	-5 17955853	12.81064064	3 13623318
C	-3 75936146	15 01791323	2 13047662
C	-1 98902927	13 52579329	1 33352690
C	-5 70045153	14 11983583	3 27698405
0	-5 92536105	11 70786395	3 65830803
C	-5 00810401	15 19890430	2 78622065
C	-3 02088179	16 11741544	1 61286367
C C	-1 29647311	14 60489317	0.84295904
н	-1 59178321	12 50504182	1 22850145
н	-6 66655404	12.30304102	3 78468150
н Н	-5 90957559	11 73587307	1 61776050
н Н	-5.90937339	16 21978071	2 80102705
н Н	-3 /3/08662	17 13078053	1 72600575
II C	1 817/62/3	15 01/23273	0.08/00337
н	-1.01/40243	12.71+23273	0.33550637
Ч	-0.55027075 -1.27268857	16 767/7601	0.55550054
Γ	-1.24300034	-0.60727280	0.30240392
C	-3.0/880087	-0.09757509	0.20902030
ч	-3.7+007702	-2.12440400	-0 / 50/0721
11	-2.00700407	0.1000202	0.77070741

С	-2.99691415	-3.17075744	-0.13095004
С	-5.29261707	-2.38632278	-0.09760625
С	-3.45133276	-4.49016526	-0.38756684
С	-1.59947057	-2.93020277	-0.02321772
С	-5.74654971	-3.70297004	-0.35357016
0	-6.25365180	-1.33705511	0.04504575
С	-4.84854864	-4.73160077	-0.49532869
С	-2.49901034	-5.53654326	-0.53023991
С	-0.70136648	-3.95878717	-0.16524081
Н	-1.25558401	-1.90410849	0.17588254
Н	-6.82783464	-3.88715337	-0.43657266
Н	-6.65911452	-1.15597578	-0.80607720
Н	-5.19205349	-5.75781031	-0.69439927
Н	-2.86162706	-6.55623127	-0.72878118
С	-1.15550605	-5.27552658	-0.42145952
Н	0.37989337	-3.77453897	-0.08249025
Н	-0.41620835	-6.08253778	-0.53125031

Optimized Cordinate of SPHN-Zn²⁺ (Receptor 1) complex:

С	-2.17837303	-1.33849219	3.38825689
С	-1.17691196	-0.39137954	3.63717772
С	-0.84883206	0.55713434	2.65959251
С	-1.51973623	0.55840140	1.43049531
С	-2.52464815	-0.38845185	1.18367232
С	-2.85427107	-1.33530445	2.16234053
Н	0.66023168	1.48200240	3.86183463
Н	-2.42723844	-2.06387637	4.13446655
Н	-0.66021518	-0.39219525	4.57496939
С	0.15075288	1.49729933	2.92077774
С	-1.19746820	1.49391707	0.43710453
Н	-3.04143004	-0.38788751	0.24649439
Н	-3.62160370	-2.05623831	1.97295565
С	-0.15686879	2.50371303	0.71914950
С	0.49079994	2.45918103	1.96311533
Н	1.25610398	3.17372592	2.18353694
0	0.27466734	3.58459081	-0.19155747
С	-1.97189579	1.36198708	-0.92630260
Н	-2.61617924	0.53484961	-1.14409198
Ν	-1.74486167	2.27769840	-1.74996698
0	-2.45220158	4.20849371	-4.81550335
Ν	-1.67407696	4.92386990	-2.63813469
С	-2.91741855	5.36731801	-1.83160793
С	-4.19322247	5.76199110	-2.25243494
Ν	-2.59409895	5.12790526	-0.50076766
С	-5.29548543	5.47065149	-1.35861659
Н	-4.35325827	6.21128958	-3.21004660
С	-3.74036058	4.99473948	0.38572073
С	-5.06300404	4.97147798	-0.02639065
Н	-6.30031791	5.62619265	-1.69327374

Н	-5.85894571	4.65157545	0.61377922
Ν	-3.04486824	5.10169048	1.69834269
С	-3.07221803	5.54552336	3.05685832
0	-4.07547726	5.62088062	3.81228136
С	-1.48713980	5.96591658	3.43006532
Н	-0.99133984	5.18777986	3.97279248
Н	-1.51846669	6.85268720	4.02864839
Ν	-0.69814514	6.23702406	2.09006175
С	0.48685545	6.41301886	1.76663795
Н	1.31757881	5.97534497	2.27963229
С	0.63322109	7.39976172	0.54947646
С	1.91926093	7.56695671	0.02044321
С	-0.49300171	8.16979942	-0.03711304
С	2.98527754	6.83160892	0.55827058
С	2.14864437	8.46004123	-1.03362250
С	-0.20820126	9.06298795	-1.08159602
С	4.27764103	6.98718954	0.04176884
Н	2.81110040	6.15064890	1.36499850
С	3.44221055	8.61355165	-1.55140347
С	1.09519019	9.20495019	-1.57511003
Н	-0.99901856	9.64278532	-1.50944501
С	4.50602529	7.87804297	-1.01418928
Н	5.09035540	6.42542823	0.45406811
Н	3.61669799	9.29421011	-2.35841926
Н	1.28755429	9.88914952	-2.37495126
Н	5.49293466	7.99656794	-1.41020251
0	-1.91848261	8.07567889	0.37310791
Zn	-2.00430063	6.28227589	0.85062063
Zn	-1.27618994	3.94693289	-1.16121177
С	-1.99175599	3.89282811	-3.68737948
С	-1.74705319	2.34216812	-3.25881140
Н	-0.79191169	2.02386479	-3.62196722
Н	-2.50774485	1.71086112	-3.66826321

Optimized Cordinate of SPHN-Zn²⁺ + PPi complex:

С	-1.43679 -4.53964 2.2766
С	-1.55806 -3.40751 3.09644
С	-1.61151 -2.12903 2.52326
С	-1.5434 -1.98668 1.13318
С	-1.41958 -3.11612 0.31211
С	-1.36615 -4.39299 0.88433
Н	-1.78141 -1.09932 4.40155
Н	-1.39825 -5.51575 2.7132
Н	-1.61132 -3.51944 4.15945
С	-1.73419 -0.99194 3.33805
С	-1.5989 -0.7146 0.55926
Н	-1.36491 -3.00314 -0.75162
Н	-1.27155 -5.25613 0.25895
С	-1.72831 0.43072 1.36741

С	-1.79641	0.28609 2.76038
Н	-1.89678	1.15033 3.38342
0	-1.81402	1.74471 0.77374
С	-1.55614	-0.56098 -0.96373
H	-1 74549	-1 39981 -1 60021
N	-1 3049	0 59281 -1 46127
C	-1 38878	2 52638 -2 9579
0	-1 38851	3 03886 -4 10716
N	0 02023	3 3 2 7 6 6 1 7 8 5 6 3
N C	1 20620	3.32700 - 1.78303
C C	2 07055	4.22003 -1.0/940
	-3.0/033	4./2300 -1.39932
IN C	-1.21403	4.3/493 0.01390
C U	-3.6559/	5.629// -0.4689
H	-3.5/54	4.44181 -2.29856
C	-1.63659	5.46638 0.8427
C	-2.91646	6.01498 0.68632
Н	-4.63773	6.01915 -0.63729
Н	-3.31865	6.70121 1.40233
N	-0.62076	5.7437 1.84843
С	-0.71181	7.00675 2.63581
0	-1.81594	7.49876 2.98055
С	0.66397	7.68616 3.02263
Н	1.07652	7.23851 3.90354
Н	0.52917	8.73286 3.19805
Ν	1.53121	7.48282 1.85837
С	2.45385	8.29233 1.4707
Н	2.89265	8.98478 2.15821
С	2.90709	8.2566 -0.00412
С	4.10241	8.88255 -0.39094
С	2.10191	7.61609 -0.97395
С	4.89703	9.5346 0.56282
C	4.50424	8.85547 -1.73414
C	2 5157	7 5882 -2 31288
Ċ	6 09041	10 15922 0 17251
H	4 59317	9 55547 1 58835
C	5 69625	9 4805 -2 1232
C C	3 71579	8 20409 -2 69151
Н	1 91286	7 09617 -3 04761
C C	6 48915	10 13282 -1 17061
н	6 69694	10.65615 0.90005
Ч	6 00072	9 <i>A</i> 596 <i>A</i> - 3 1 <i>A</i> 871
н Ц	1 03027	8 17801 3 71 <i>/</i>
н Н	7 30001	10.61075 - 1.46848
0	0.84722	7 00752 0 61242
U Zn	1 00067	5 88368 0 001 <i>4</i>
Zil	1.0000/	J.00JU0 U.9014
	-0.39/32	1.70001 -0.4/99/
r O	4.90/33	4.23008 0.40143
0	4.00943	J.U00/J -U.U9010
U	3.440UI	2.39838 0.4/3/3
Р	1.96882	1./606/ 0.36349

0	2.08387	0.43478 1.06697
0	1.44418	4.4425 -0.34398
0	1.34926	1.52236 -1.18861
0	0.71391	2.69454 0.93101
0	2.36815	4.86652 1.94329
С	-1.82294	1.03746 -2.76376
Н	-1.44229	0.43363 -3.56094
Н	-2.89083	0.96974 -2.75052

References:

1. (a) Reddi, A. R.; Guzman, T. R.; Breece, R. M.; Tiemey, D. L.; Gibney, B. R.; J. Am.

Chem. Soc., **2007**, *129*, 12815–12827. (b) Lohani, C. R.; Kim, J-M.; Chung, S-Y.; Yoon, J.;

Lee, K-H.; Analyst, 2010, 135, 2079-2084.