Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Immobilization of Co-containing Polyoxometalates in MIL-101(Cr): Structural Integrity versus Chemical Transformation

William Salomon, François-Joseph Yazigi, Catherine Roch-Marchal,* Pierre Mialane, Patricia Horcajada, Christian Serre, Mohamed Haouas, Francis Taulelle and Anne Dolbecq*

Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles cedex, France.

E-mail: catherine.roch@uvsq.fr (C.R.-M.), anne.dolbecq@uvsq.fr (A.D.)

Synthesis of MILI-101(Cr):

A mixture of Cr(NO₃).9H₂O (2 g, 5 mmol), 1,4-benzene-dicarboxylic acid (terephtalic acid, 1.4 g, 8.4 mmol) and 25 mL of distilled water was added in a Teflon container inside an autoclave. Then the autoclave was heated for 9 h at 493 K in an oven under static conditions. Once the synthesis was completed, the solid product was filtered off using a glass filter with a pore size between 40 and 100 μ m to remove free terephthalic acid. Then the solid product was washed with water several times, dried with ethanol and diethyl ether. The activation of the MIL-101(Cr) (extraction of the terephthalic acid encapsulated into the pores) was performed thanks to a soxhlet extractor with ethanol under reflux conditions as described for MIL-101NH₂(Al). Yield: 53% (based on Cr). Elemental analysis is in agreement with the following formula [Cr^{III}₃(H₂O)₃O(O₂CC₆H₄CO₂)₃]NO₃·2EtOH. Anal. Calcd (Found) for Cr₃H₃₀O₂₁C₂₈N: C 38.54 (38.50), H 3.45 (3.39), N 1.60 (1.44). The solvent molecules are removed by standing in water before drying the solid in an oven at 393 K overnight before the impregnation experiments.

1. M. Hartmann, and M. Fischer, Microporous Mesoporous Mater., 2012, 164, 38.

Figure S1. X-Ray diffraction patterns of the POM precursor, MIL-101(Cr), POM@MIL and POM@MI^I after exchange with LiCl for a) $PW_{11}Co$, b) $P_2W_{18}Co_4$ and c) Co_7 -Ale POM.

Fig. S2 A) Porous distribution by Horvath-Kawazoe method of MII-101(Cr) (blue), $PW_{11}Co@MIL$ (red), $P_2W_{18}Co_4@MIL$ (green) and PWCo@MIL (purple).

B) N_2 adsorption/desorption isotherm (left) and porous distribution (right) of MII-101(Cr) (red), $PW_{11}Co@MIL$ (blue) and exchanged- $PW_{11}Co@MIL$ (green).

C) N₂ adsorption/desorption isotherm (left) and porous distribution (right) of MII-101(Cr) (red), $P_2W_{18}Co_4@MIL$ (blue) and exchanged- $P_2W_{18}Co_4@MIL$ (green).

 Table S1. Specific surface area, total pore volume and maxima for pore size distribution.

	Big cavity	Small cavity	S BET	Total pore volume
	d(nm)	d(nm)	(m ² g ⁻¹)	(cm ³ g ⁻¹)
MIL-101(Cr)	2.42	1.77	3007	1.507
PW ₁₁ Co@MIL	2.27	1.57	1785	0.873
exchanged-PW ₁₁ Co@MIL	2.42	1.77	3047	1.504
P ₂ W ₁₈ Co4@MIL	2.22	~ 1.5	1534	0.760
exchanged-P ₂ W ₁₈ Co ₄ @MIL	2.17	1.57	1823	0.904
PWCo@MIL	2.27	1.52	1432	0.704

	W/P	W/Co	W/Cr	Cl/Cr
Experimental values for PW ₁₁ Co@MIL	13.2	14.5	0.72	-
Calc. value for $[Cr_3(H_2O)_3O(O_2CC_6H_4CO_2)_3][PW_{11}O_{39}Co(H_2O)]_{0.2}$	11	11	0.73	-
Experimental values for exchanged-PW ₁₁ Co@MIL	10.1	14.4	0.03	0.38
Calc. value for [Cr ₃ (H ₂ O) ₃ O(O ₂ CC ₆ H ₄ CO ₂) ₃][PW ₁₁ O ₃₉ Co(H ₂ O)] _{0.01} Cl _{0.95}	11	11	0.03	0.32
Experimental values for P ₂ W ₁₈ Co ₄ @MIL	8.2	5.3	0.72	-
Calc. value for [Cr ₃ (H ₂ O) ₃ O(O ₂ CC ₆ H ₄ CO ₂) ₃][P ₂ W ₁₈ O ₆₈ Co ₄ (H ₂ O) ₂] _{0.1}	9	4.5	0.60	-
Experimental values for exchanged-P ₂ W ₁₈ Co ₄ @MIL	9.7	5.7	0.48	0.07
Calc. value for [Cr ₃ (H ₂ O) ₃ O(O ₂ CC ₆ H ₄ CO ₂) ₃][P ₂ W ₁₈ O ₆₈ Co ₄ (H ₂ O) ₂] _{0.08} Cl _{0.2}	9	4.5	0.48	0.07
Experimental values for PWCo@MIL	2.9	5.4	0.65	-
Calc. value for $[Cr_{3}(H_{2}O)_{3}O(O_{2}CC_{6}H_{4}CO_{2})_{3}][P_{2}W_{18}O_{68}Co_{7}(OH)_{2}(H_{2}O)_{4}(O_{3}PC(O)(C_{3}H_{6}N_{3})PO_{3})_{2}]_{0.07}$	3	2.6	0.42	-
Experimental values for exchanged-PWCo@MIL	2.0	4.8	0.41	0.08

Table S2. Semi-quantitative EDX analysis ; the reported experimental ratios result from an average of 5 to 10 measurements.

Figure S3. a) UV-vis spectra of a solution of $P_2W_{18}Co_4$, same solution 24 h after addition of MIL-101(Cr) and the solution obtained by exchange of $P_2W_{18}Co_4@MIL$ with LiCl.

	λ / nm	A	<i>c</i> / mol l ⁻¹	V/mL	<i>n</i> / mol
Solution of P ₂ W ₁₈ Co ₄ before impregnation	574	0.619	3.64 10-3	17.5	6.34 10-5
Solution of P ₂ W ₁₈ Co ₄ after impregnation	574	0.329	1.93 10 ⁻³	17.5	3.36 10-5
Solution of P ₂ W ₁₈ Co ₄ @MIL after	574	0.142	0.83 10-3	3	2.50 10-6
extraction					

For the impregnation experiment $K_{10}P_2W_{18}Co_4$ (0.350 g, 6.34 10⁻⁵ mol) was dissolved in 17.5 mL of water before addition of MIL-101(Cr) (0.219 g, 2.80 10⁻⁴ mol). From the table above we can deduce that 2.98 10⁻⁵ mol of POM have been encapsulated for 2.80 10⁻⁴ mol of MIL, that gives a ratio POM/MIL = 0.1 consistent with the formula $[Cr_3(H_2O)_3O(O_2CC_6H_4CO_2)_3][P_2W_{18}O_{68}Co_4(H_2O)_2]_{0.1}$.

For the extraction experiment a suspension of $P_2W_{18}Co_4@MIL$ (0.150 g) in 3 mL of 5 M LiCl was stirred for 24 h at room temperature. This sample of $P_2W_{18}Co_4@MIL$ contains 1.24 10⁻⁵ mol of POM encapsulated. The results deduced from the UV-vis spectra thus indicate that 20% of the POM has been extracted.

Figure S4. a) UV-vis spectra of a solution of $PW_{11}Co_3$ same solution 24 h after addition of MIL-101(Cr) and the solution obtained by exchange of $PW_{11}Co@MIL$ with LiCl.

	λ / nm	A	<i>c</i> / mol l ⁻¹	V/mL	n / mol
Solution of $PW_{11}Co$ before impregnation	538	0.381	5.61 10-3	20	1.12 10-4
Solution of PW ₁₁ Co after impregnation	538	0.174	2.56 10-3	20	5.12 10-5
Solution of PW ₁₁ Co@MIL after extraction	538	0.149	2.19 10-3	10	2.19 10-5

For the impregnation experiment $Cs_5PW_{11}Co$ (0.400 g, 1.12 10⁻⁴ mol) was dissolved in 20 mL of water before addition of MIL-101(Cr) (0.250 g, 3.20 10⁻⁴ mol). From the table above we can deduce that 6.08 10⁻⁵ mol of POM have been encapsulated for 3.20 10⁻⁴ mol of MIL, that gives a ratio POM/MIL = 0.19 consistent with the formula $[Cr_3(H_2O)_3O(O_2CC_6H_4CO_2)_3][PW_{11}O_{39}Co(H_2O)]_{0.2}$.

For the extraction experiment a suspension of $PW_{11}Co@MIL$ (0.250 g) in 10 mL of 5 M LiCl was stirred for 24 h at room temperature. This sample of $PW_{11}Co@MIL$ contains 3.00 10⁻⁵ mol of POM encapsulated. The results deduced from the UV-vis spectra thus indicate that at least 73% of the POM has been extracted.

Figure S5. a) Visible spectra of a solution of Co₇-Ale same solution 24h after addition of MIL-101(Cr) and the solution obtained by exchange of PWCo@MIL with LiCl; b) comparison of the spectra of the solution obtained after exchange of the POM from PWCo@MIL and $P_2W_{18}Co_4@MIL$.

For the impregnation experiment $Na_9(NH_4)_5[(PW_9O_{34})_2Co_7(OH)_2(H_2O)_4(O_3PC(O)(C_3H_6NH_3)PO_3)_2]\cdot 35H_2O$ (0.246 g, 3.84 10⁻⁵ mol) was dissolved in 15 mL of water before addition of MIL-101(Cr) (0.200 g, 2.56 10⁻⁴ mol). For the extraction experiment a suspension of PWCo@MIL (0.150 g) in 3 mL of 5M LiCl in D₂O was stirred for 24 h at room temperature.

Figure S6. Comparison of 31 P NMR spectra of an aqueous solution of PW₁₁Co a) before and b) after impregnation.

Figure S7. Infra-red spectra of MIL-101(Cr), POM@MIL and POM@MIL after exchange with LiCl for the a) $PW_{11}Co$, b) $P_2W_{18}Co_4$ and c) Co_7 -Ale POM precursors.

c)