## Electronic Supplementary Information

# Immobilization of Co-containing Polyoxometalates in MIL-101(Cr): Structural Integrity versus Chemical Transformation 

William Salomon, François-Joseph Yazigi, Catherine Roch-Marchal, ${ }^{*}$ Pierre Mialane, Patricia Horcajada, Christian Serre, Mohamed Haouas, Francis Taulelle and Anne Dolbecq*

Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles cedex, France.

E-mail: catherine.roch@uvsq.fr (C.R.-M.), anne.dolbecq@uvsq.fr (A.D.)

## Synthesis of MILI-101(Cr):

A mixture of $\mathrm{Cr}\left(\mathrm{NO}_{3}\right) \cdot 9 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~g}, 5 \mathrm{mmol})$, 1,4-benzene-dicarboxylic acid (terephtalic acid, $1.4 \mathrm{~g}, 8.4$ mmol ) and 25 mL of distilled water was added in a Teflon container inside an autoclave. Then the autoclave was heated for 9 h at 493 K in an oven under static conditions. Once the synthesis was completed, the solid product was filtered off using a glass filter with a pore size between 40 and 100 $\mu \mathrm{m}$ to remove free terephthalic acid. Then the solid product was washed with water several times, dried with ethanol and diethyl ether. The activation of the MIL-101( Cr ) (extraction of the terephthalic acid encapsulated into the pores) was performed thanks to a soxhlet extractor with ethanol under reflux conditions as described for MIL- $101 \mathrm{NH}_{2}$ (Al). Yield: $53 \%$ (based on Cr ). Elemental analysis is in agreement with the following formula $\left[\mathrm{Cr}^{\mathrm{II}}{ }_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{3}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{EtOH}$. Anal. Calcd (Found) for $\mathrm{Cr}_{3} \mathrm{H}_{30} \mathrm{O}_{21} \mathrm{C}_{28} \mathrm{~N}$ : C 38.54 (38.50), H 3.45 (3.39), N 1.60 (1.44). The solvent molecules are removed by standing in water before drying the solid in an oven at 393 K overnight before the impregnation experiments.

1. M. Hartmann, and M. Fischer, Microporous Mesoporous Mater., 2012, 164, 38.

Figure S1. X-Ray diffraction patterns of the POM precursor, MIL-101(Cr), POM@MIL and POM@MII, after exchange with LiCl for a) $\mathrm{PW}_{11} \mathrm{Co}$, b) $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4}$ and c) $\mathrm{Co}_{7}$-Ale POM.


Fig. S2 A) Porous distribution by Horvath-Kawazoe method of MIl-101(Cr) (blue), PW ${ }_{11}$ Co@MIL (red), $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @ \mathrm{MIL}$ (green) and PWCo@MIL (purple).

B) $\mathrm{N}_{2}$ adsorption/desorption isotherm (left) and porous distribution (right) of MIl-101(Cr) (red), PW ${ }_{11} \mathrm{Co} @$ MIL (blue) and exchanged-PW ${ }_{11} \mathrm{Co} @$ MIL (green).


C) $\mathrm{N}_{2}$ adsorption/desorption isotherm (left) and porous distribution (right) of MIl-101(Cr) (red), $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @ \mathrm{MIL}$ (blue) and exchanged- $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @$ MIL (green).


Table S1. Specific surface area, total pore volume and maxima for pore size distribution.

|  | $\begin{aligned} & \text { Big cavity } \\ & \text { d(nm ) } \end{aligned}$ | $\begin{aligned} & \text { Small cavity } \\ & \mathbf{d}(\mathrm{nm}) \end{aligned}$ | $\begin{aligned} & \text { S BET } \\ & \left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right) \end{aligned}$ | Total pore volume $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| MIL-101(Cr) | 2.42 | 1.77 | 3007 | 1.507 |
| PW ${ }_{11} \mathbf{C o} @$ MIL | 2.27 | 1.57 | 1785 | 0.873 |
| exchanged-PW ${ }_{11} \mathrm{Co} @$ MIL | 2.42 | 1.77 | 3047 | 1.504 |
| $\mathrm{P}_{2} \mathrm{~W}_{18} \mathbf{C o 4 @ M I L}$ | 2.22 | $\sim 1.5$ | 1534 | 0.760 |
| exchanged- $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @$ MIL | 2.17 | 1.57 | 1823 | 0.904 |
| PWCo@MIL | 2.27 | 1.52 | 1432 | 0.704 |

Table S2. Semi-quantitative EDX analysis ; the reported experimental ratios result from an average of 5 to 10 measurements.

|  | W/P | W/Co | W/Cr | $\mathrm{Cl} / \mathrm{Cr}$ |
| :---: | :---: | :---: | :---: | :---: |
| Experimental values for PW ${ }_{11} \mathbf{C o} @$ MIL | 13.2 | 14.5 | 0.72 | - |
| Calc. value for $\left[\mathrm{Cr}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{3}\right]\left[\mathrm{PW}_{11} \mathrm{O}_{39} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{0.2}$ | 11 | 11 | 0.73 | - |
| Experimental values for exchanged-PW $\mathbf{1 1}^{\text {Co } @ M I L}$ | 10.1 | 14.4 | 0.03 | 0.38 |
| Calc. value for $\left[\mathrm{Cr}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{3}\right]\left[\mathrm{PW}{ }_{11} \mathrm{O}_{39} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{0.01} \mathrm{Cl}_{0.95}$ | 11 | 11 | 0.03 | 0.32 |
| Experimental values for $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @$ MIL | 8.2 | 5.3 | 0.72 | - |
| Calc. value for $\left[\mathrm{Cr}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{3}\right]\left[\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{68} \mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{0.1}$ | 9 | 4.5 | 0.60 | - |
| Experimental values for exchanged- $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @ \mathrm{MIL}$ | 9.7 | 5.7 | 0.48 | 0.07 |
| Calc. value for $\left[\mathrm{Cr}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{3}\right]\left[\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{68} \mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{0.08} \mathrm{Cl}_{0.2}$ | 9 | 4.5 | 0.48 | 0.07 |
| Experimental values for PWCo@MIL | 2.9 | 5.4 | 0.65 | - |
| Calc. value for $\left[\mathrm{Cr}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{3}\right]\left[\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{68} \mathrm{Co}_{7}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{3} \mathrm{PC}(\mathrm{O})\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{3}\right) \mathrm{PO}_{3}\right)_{2}\right]_{0.07}$ | 3 | 2.6 | 0.42 | - |
| Experimental values for exchanged-PWCo@MIL | 2.0 | 4.8 | 0.41 | 0.08 |

Figure S3. a) UV-vis spectra of a solution of $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4}$, same solution 24 h after addition of MIL$101(\mathrm{Cr})$ and the solution obtained by exchange of $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @ \mathrm{MIL}$ with LiCl .


|  | $\lambda / \mathrm{nm}$ | $A$ | $c / \mathrm{mol} \mathrm{l}^{-1}$ | $V / \mathrm{mL}$ | $n / \mathrm{mol}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Solution of $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4}$ before impregnation | 574 | 0.619 | $3.6410^{-3}$ | 17.5 | $6.3410^{-5}$ |
| Solution of $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4}$ after impregnation | 574 | 0.329 | $1.9310^{-3}$ | 17.5 | $3.3610^{-5}$ |
| Solution of $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @$ MIL after <br> extraction | 574 | 0.142 | $0.8310^{-3}$ | 3 | $2.5010^{-6}$ |

For the impregnation experiment $\mathrm{K}_{10} \mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4}\left(0.350 \mathrm{~g}, 6.3410^{-5} \mathrm{~mol}\right)$ was dissolved in 17.5 mL of water before addition of MIL-101 (Cr) $\left(0.219 \mathrm{~g}, 2.8010^{-4} \mathrm{~mol}\right)$. From the table above we can deduce that $2.9810^{-5} \mathrm{~mol}$ of POM have been encapsulated for $2.8010^{-4} \mathrm{~mol}$ of MIL, that gives a ratio $\mathrm{POM} / \mathrm{MIL}=0.1$ consistent with the formula $\left[\mathrm{Cr}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{3}\right]\left[\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{68} \mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{0.1}$.

For the extraction experiment a suspension of $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @$ MIL $(0.150 \mathrm{~g})$ in 3 mL of 5 M LiCl was stirred for 24 h at room temperature. This sample of $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @$ MIL contains $1.2410^{-5} \mathrm{~mol}$ of POM encapsulated. The results deduced from the UV-vis spectra thus indicate that $20 \%$ of the POM has been extracted.

Figure S4. a) UV-vis spectra of a solution of $\mathrm{PW}_{11} \mathrm{Co}$, same solution 24 h after addition of MIL$101(\mathrm{Cr})$ and the solution obtained by exchange of $\mathrm{PW}_{11} \mathrm{Co} @ \mathrm{MIL}$ with LiCl .


|  | $\lambda / \mathrm{nm}$ | $A$ | $c / \mathrm{mol} \mathrm{l}^{-1}$ | $V / \mathrm{mL}$ | $n / \mathrm{mol}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Solution of $\mathrm{PW}_{11}$ Co before impregnation | 538 | 0.381 | $5.6110^{-3}$ | 20 | $1.1210^{-4}$ |
| Solution of $\mathrm{PW}_{11} \mathrm{Co}$ after impregnation | 538 | 0.174 | $2.5610^{-3}$ | 20 | $5.1210^{-5}$ |
| Solution of $\mathrm{PW}_{11} \mathrm{Co} @ M I L$ after extraction | 538 | 0.149 | $2.1910^{-3}$ | 10 | $2.1910^{-5}$ |

For the impregnation experiment $\mathrm{Cs}_{5} \mathrm{PW}_{11} \mathrm{Co}\left(0.400 \mathrm{~g}, 1.1210^{-4} \mathrm{~mol}\right)$ was dissolved in 20 mL of water before addition of MIL-101 (Cr) $\left(0.250 \mathrm{~g}, 3.2010^{-4} \mathrm{~mol}\right)$. From the table above we can deduce that $6.0810^{-5} \mathrm{~mol}$ of POM have been encapsulated for $3.2010^{-4} \mathrm{~mol}$ of MIL, that gives a ratio POM/MIL $=0.19$ consistent with the formula $\left[\mathrm{Cr}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{3}\right]\left[\mathrm{PW}_{11} \mathrm{O}_{39} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{0.2}$.

For the extraction experiment a suspension of $\mathrm{PW}_{11} \mathrm{Co} @ \mathrm{MIL}(0.250 \mathrm{~g})$ in 10 mL of 5 M LiCl was stirred for 24 h at room temperature. This sample of $\mathrm{PW}_{11} \mathrm{Co} @ M I L$ contains $3.0010^{-5} \mathrm{~mol}$ of POM encapsulated. The results deduced from the UV-vis spectra thus indicate that at least $73 \%$ of the POM has been extracted.

Figure S5. a) Visible spectra of a solution of $\mathrm{Co}_{7}$-Ale, same solution 24 h after addition of MIL$101(\mathrm{Cr})$ and the solution obtained by exchange of $\mathrm{PWCo} @ \mathrm{MIL}$ with LiCl ; b) comparison of the spectra of the solution obtained after exchange of the POM from PWCo@MIL and $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4} @$ MIL.


For the impregnation experiment $\mathrm{Na}_{9}\left(\mathrm{NH}_{4}\right)_{5}\left[\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2} \mathrm{Co}_{7}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{3} \mathrm{PC}(\mathrm{O})\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NH}_{3}\right) \mathrm{PO}_{3}\right)_{2}\right] \cdot 35 \mathrm{H}_{2} \mathrm{O}$ $\left(0.246 \mathrm{~g}, 3.8410^{-5} \mathrm{~mol}\right)$ was dissolved in 15 mL of water before addition of MIL-101( Cr$)\left(0.200 \mathrm{~g}, 2.5610^{-4}\right.$ $\mathrm{mol})$. For the extraction experiment a suspension of PWCo@MIL ( 0.150 g ) in 3 mL of 5 M LiCl in $\mathrm{D}_{2} \mathrm{O}$ was stirred for 24 h at room temperature.

Figure S6. Comparison of ${ }^{31} \mathrm{P}$ NMR spectra of an aqueous solution of $\mathrm{PW}_{11} \mathrm{Co}$ a) before and b) after impregnation.


Figure S7. Infra-red spectra of MIL-101(Cr), POM@MIL and POM@MIL after exchange with LiCl for the a) $\left.\mathrm{PW}_{11} \mathrm{Co}, \mathrm{b}\right) \mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{Co}_{4}$ and c) $\mathrm{Co}_{7}$-Ale POM precursors.


