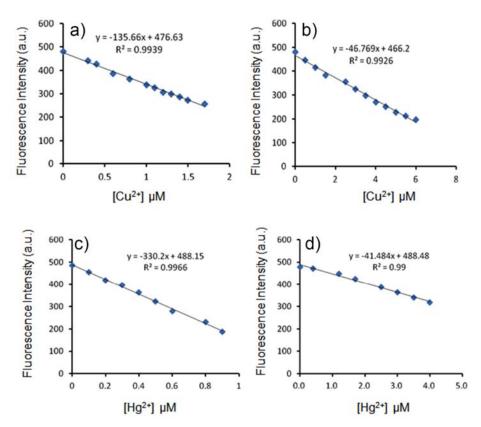

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014


Supporting information

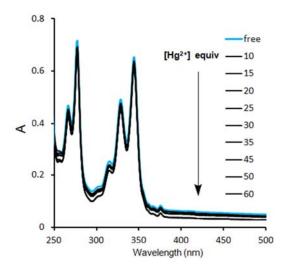
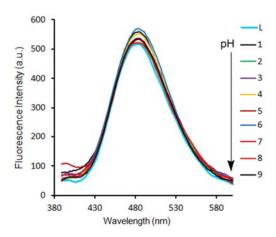
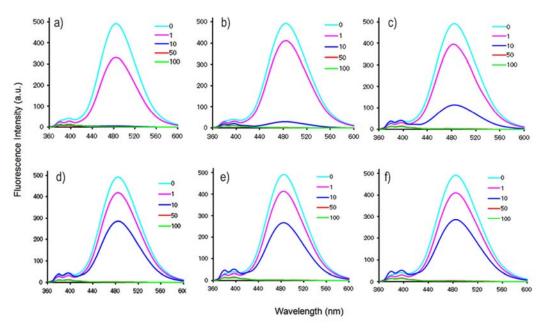
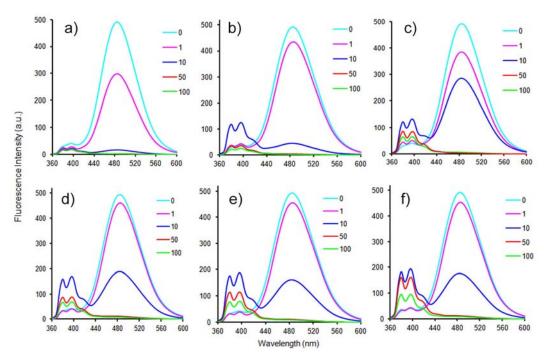
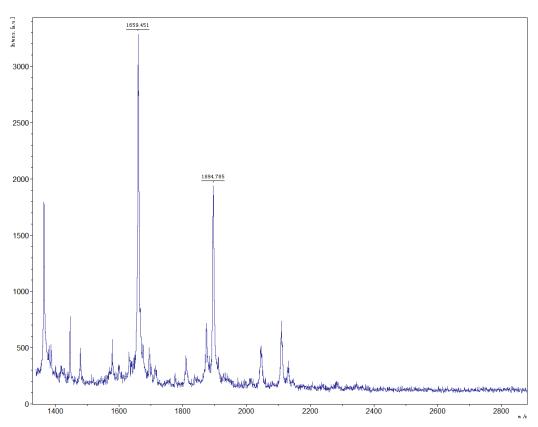

Figure S1. Fluorescence spectral of **L** (1.0 μ M) upon addition of increasing concentrations of Cu²⁺ in CH₃CN / H₂O (v/v, 95:5) solution at 298K. λ_{ex} = 343 nm.

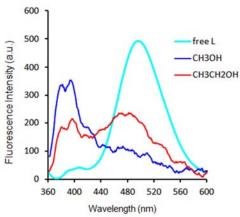
Figure S2. Fluorescence spectral of **L** (1.0 μ M) upon addition of increasing concentrations of Hg²⁺ in CH₃CN / H₂O (v/v, 95:5) solution at 298K. $\lambda_{ex} = 343$ nm.

Figure S3. Plot of fluorescence intensity change (485 nm) of **L** with varied concentrations of Cu^{2+} and Hg^{2+} at 298K, the limit of detection of Cu^{2+} was calculated to be a) 4.54×10^{-9} M in CH_3CN , b) 1.87×10^{-8} M in CH_3CN/H_2O (v/v, 95:5), and the limit of detection of Hg^{2+} was calculated to be c) 2.64×10^{-9} M in CH_3CN , d) 1.08×10^{-8} M in CH_3CN/H_2O (v/v, 95:5), by the formula (3 σ /K).

Figure S4. UV-vis spectral changes of $L(1.0 \mu M)$ in CH_3CN / H_2O solution (v/v, 95:5) with increasing concerntration of Hg^{2+} ions.


Figure S5. Fluorescence spectral changes of L (1.0 μ M) in CH₃CN / H₂O (v/v, 95:5) from pH1.0 to 9.0. λ_{ex} = 343 nm.


Figure S6. Fluorescence spectral changes of **L** (1.0 μ M) upon addition of different concentrations of Hg(ClO₄)₂ (1, 10, 50, 100 μ M) and determined immediately at 298 K in a) CH₃CN solution; b) 1% H₂O (H₂O/CH₃CN, v/v); c) 2% H₂O (H₂O/CH₃CN, v/v); d) 3% H₂O (H₂O/CH₃CN, v/v); e) 4% H₂O (H₂O/CH₃CN, v/v); f) 5% H₂O (H₂O/CH₃CN, v/v). λ_{ex} = 343 nm.

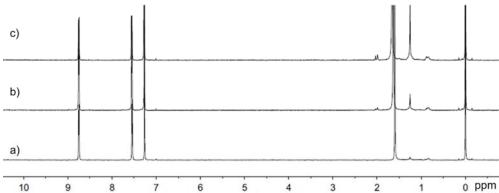
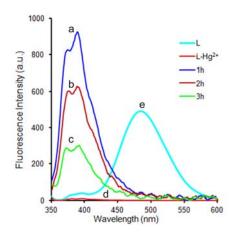

Figure S7. Fluorescence spectral changes of **L** (1.0 μ M) upon addition of different concentrations of Hg(ClO₄)₂ (1, 10, 50, 100 μ M) and determined after 48 h at 298 K in a) CH₃CN solution; b) 1% H₂O (H₂O/CH₃CN, v/v); c) 2% H₂O (H₂O/CH₃CN, v/v); d) 3% H₂O (H₂O/CH₃CN, v/v); e) 4% H₂O (H₂O/CH₃CN, v/v); f) 5% H₂O (H₂O/CH₃CN, v/v). λ_{ex} = 343 nm.

Figure S8. Matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF) of L: $[\mathbf{L} + Hg^{2+} + 3H_2O + H]^+$, m/z 1894.785.

Figure S9. Fluorescence spectral changes of **L**-Hg²⁺ ([**L**]=1.0 μ M, [**L**]: [Hg²⁺]= 1:50) in CH₃CN soluition upon addition 5% of CH₃OH, CH₃CH₂OH, respectively, and determined after 48 h.


Figure S10. ¹H NMR spectral of 4,4'-bipyridine (3.0 mM) in the presence of different concerntration of Hg(ClO₄)₂ a) free 4,4'-bipyridine, b) upon addition of 0.5 equiv of Hg(ClO₄)₂, c) upon addition of 1.0 equiv of Hg(ClO₄)₂ at 298 K.

a)
$$N \xrightarrow{R-X} R-N^+ \longrightarrow N^+-R$$
organic solvent

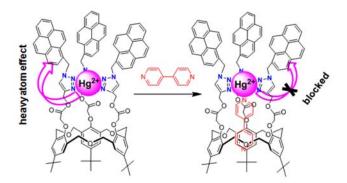

b)
$$N \longrightarrow N \longrightarrow N^+ - CH_3$$

Figure S11. a) General chemical reaction based on 4,4'-bipyridine; b) representative of chemical reaction of 4,4'-bipyridine was selected in the present study.

Detail experiment procedure for reaction (b): CH₃I (284 mg, 2 mmol) was added to a 10 mL CH₃CN solution of 4,4'-bipyridine (156 mg, 1 mmol) and heated under 35 °C. During the reaction procedure, the reaction mixture was drawing 3 μ L by a syringe to 3 mL of **L**-Hg²⁺ solution (1.0 μ M of **L** with 50 equiv of Hg²⁺ in CH₃CN solution) in a cuvette after 1h, 2h, 3h, respectively, and then determined by fluorescence spectral immediately. The increasing monomer emission intensity of **L**-Hg²⁺ decreased with the reaction time increasing, which indicated that 4,4'-bipyridine was consumed dramatically after 3 h later (Figure S12).

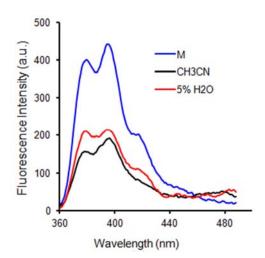


Figure S12. Fluorescence spectral changes of **L**-Hg²⁺ (1.0 μ M of **L** with 50 equiv of Hg²⁺ in CH₃CN solution) upon addition of the reaction mixture of 4,4'-bipyridine after a) 1h; b) 2h; c) 3h. at 298 K. λ_{ex} = 343 nm.

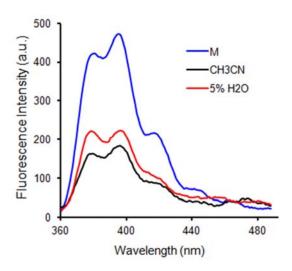


Figure S13. Plausible mechanism of heavy atom effect blocked by 4,4'-bipyridine in **L**-Hg²⁺ complex.

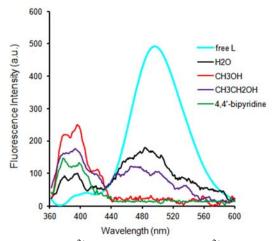

Figure S14. Molecular structure of M.

Figure S15. Fluorescence spectral changes of **M** (1.0 μ M) upon addition of 50 equiv. of Hg(ClO₄)₂ in CH₃CN and H₂O/CH₃CN (v/v, 5:95) solution, respectively at 298K, and determined immediately at 298 K. λ_{ex} = 343 nm.

Figure S16. Fluorescence spectral changes of **M** (1.0 μ M) upon addition of 50 equiv. of Hg(ClO₄)₂ in CH₃CN and H₂O/CH₃CN (v/v, 5:95) solution, respectively at 298K, and determined after 48 h at 298 K. λ_{ex} = 343 nm.

Figure S17. Fluorescence spectral changes of **L**-Cu²⁺ ([**L**]=1.0 μ M, [**L**]: [Cu²⁺]= 1:50) in CH₃CN soluition upon addition 5% of H₂O, CH₃OH, CH₃CH₂OH and 20 equiv of 4,4'-bipyridine, respectively, and then determined after 48 h.