Effective Donor Abilities of E-*t*-Bu and EPh (E = O,

S, Se, Te) to a High Valent Transition Metal

Ross D. Bemowski, Amrendra K. Singh, Bailey J. Bajorek, Yvonne DePorre, Aaron L. Odom*

Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824

Table of Contents:

Example Files for NBO Overlap Calculations	2
Input File for NCr(NPr ⁱ ₂) ₂ OMe for G03	2
Output file	.3
Table of LDP, Cr-E-C angle, BDE, and orbital overlap	.4
Table of SST Measurement Temperature, Rate Constant, and ΔG ‡	.4
Crystallographic Data with Selected Bond Distances and Angles for New NCr(NPri2)2X Complexes	.5
Linear and 2^{nd} order polynomial fits for Overlap and BDE vs LDP	.6
NMR spectra	7

Example Files for NBO Overlap Calculations

Input File for NCr(NPrⁱ₂)₂OMe for G03

%chk=NCrOMeNBO.chk %mem=3900MB %nproc=4 # opt rb3pw91/lanl2dz pop=nboread geom=connectivity

Title Card Required

01						
Cr	-0.38478500	0.00008400	0.11229800			
Ν	-0.81275000	-1.50298200	-0.77547700			
Н	-1.49423700	-2.18455900	-0.45678600			
Н	-0.41713400	-1.72890600	-1.68723000			
Ν	-0.80539900	1.50562000	-0.77477500			
Н	-0.41134100	1.72769500	-1.68815300			
Н	-1.48145400	2.19196600	-0.45478000			
Ν	-1.26936500	0.00203400	1.34745900			
С	2.44102400	-0.00163300	-0.19719800			
Н	3.33874900	-0.01110000	0.43084800			
Н	2.45473800	-0.89368400	-0.84222700			
Н	2.46238400	0.90135200	-0.82651700			
0	1.29369700	-0.00346100	0.67905400			
2 5 1.0 4 3 4 5 6 1.0 7 6 7 8 9 10 1.0 1 10 11 12 13	1.0 1 1.0 12 1.0 13	1.0				
\$NBO \$END	R					
olpho	C					
lone 8 1 1	3.3 end					
bond d 1 2 s 9 13	2 d 1 5 t 1 8 s 2 3 s 9 10 s 9 11 s 9	3 s 2 4 s 5 6 s 5 12 end	57			
\$END						

Output file

Listed below are the interactions from the lone pairs on the ligand under investigation and Crbased orbitals calculated in the second order perturbation theory analysis section. These were generated from NBO3 as implemented in G03 from the input file above.

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

Threshold for printing: 0.50 kcal/mol (Intermolecular threshold: 0.05 kcal/mol)						
(internioreediar unesito)	E(2) E(i)-E(i)	(i) F(i.i)				
Donor NBO (i)	Acceptor NBO (j)	kcal/mol a.u.	a.u.			
from unit 2 to unit 1		7.17 1.04	0.000			
26. LP (1) O 13	/6/. BD*(1)Cr 1 - N 2	/.1/ 1.06	0.082			
26. LP (1) O 13	/68. BD*(2)Cr 1 - N 2	13.31 0.55	0.083			
26. LP (1) O 13	/ 69. BD*(1)Cr 1 - N 5	7.21 1.06	0.082			
26. LP (1) O 13	/ 70. BD*(2)Cr 1 - N 5	13.23 0.54	0.083			
26. LP (1) O 13	/71.BD*(1)Cr 1-N 8	0.24 0.86	0.013			
26. LP (1) O 13	/72.BD*(2)Cr 1-N 8	6.29 0.57	0.056			
26. LP (1) O 13	/73.BD*(3)Cr 1-N 8	0.11 0.57	0.007			
27. LP (2) O 13	/ 67. BD*(1)Cr 1 - N 2	2.91 0.75	0.042			
27. LP (2) O 13	/68.BD*(2)Cr 1 - N 2	6.97 0.24	0.037			
27. LP (2) O 13	/ 69. BD*(1)Cr 1 - N 5	3.01 0.75	0.043			
27. LP (2) O 13	/ 70. BD*(2)Cr 1 - N 5	7.22 0.24	0.038			
27. LP (2) O 13	/ 72. BD*(2)Cr 1 - N 8	0.07 0.27	0.004			
27. LP (2) O 13	/73.BD*(3)Cr 1-N 8	3.27 0.26	0.027			
28. LP (3) O 13	/ 67. BD*(1)Cr 1 - N 2	22.47 0.93	0.134			
28 LP(-3) O 13	/68 BD*(2)Cr 1 - N 2	57.36 0.42	0.138			
28 LP(-3) O - 13	$/69 \text{ BD}^{*}(-1)\text{Cr} + 1 - \text{N} + 5$	22 54 0.93	0.134			
28 LP(-3) O 13	$/70 \text{ BD}^{*}(-2)\text{Cr} + 1 - \text{N} + 5$	56.67 0.42	0.137			
28 LP (3) O 13	$/71 \text{ BD}^{*}(-1)\text{Cr} + 1 \text{ N} + 8$	1 39 0 73	0.031			
28 LP(-3) O 13	/72 BD*(-2)Cr = 1 N = 8	74.18 0.45	0.171			
20. L1 (3) 0 13 28 LD (2) 0 12	$72 \text{ PD}^{(2)}(2) \text{ Cr} = 1 \text{ N} 8$	1 20 0.43	0.022			
20. LF (3) 0 13	//3. BD ⁻ (3)Cf I - N 8	1.20 0.44	0.022			

Table of LDP, 0	Cr-E-C angle,	BDE, and	orbital	overlap.
-----------------	---------------	----------	---------	----------

X =	LDP (kcal/mol) ^a	Cr–E–C angle		
		(°) ^b	BDE (kcal/mol)	Orbital overlap (A.U.)
F	13.39 ± 0.27		93.7	1.608
C1	15.05 ± 0.29		65.6	1.198
Br	15.45 ± 0.30		54.7	1.117
Ι	15.80 ± 0.30		44.8	1.027
OAd (2b)	10.68 ± 0.24	$137.1(7)^{d}$	59.3	
$(OBu^{t})(2a)$	(10.59)			1.364
$SBu^{t}(3)$	12.81 ± 0.28	114.1(2)	41.2	1.125
$SeBu^{t}(4)$	13.13 ± 0.28	108.9(1)	38.4	1.088
$TeBu^{t}(5)$	13.76 ± 0.28	106.0(1)	32.0	1.002
OPh (6)	11.98 ± 0.26	$135.0(2)^{d}$	53.5	1.463
SPh (7)	13.99 ± 0.27	$108.4(1)^{d}$	35.9	1.199
SePh (8)	14.16 ± 0.27	106.8(1)	33.4	1.121
TePh (9)	14.20 ± 0.27	103.7(1)	28.1	1.041

Table of SST Measurement Temperature, Rate Constant, and ΔG .

	SST		
	Measurement	Rate	
	Temperature	Constant	ΔG‡
X=	(°C)	(s^{-1})	(kcal/mol)
F	1.8	1.424	15.86
Cl	28.1	0.489	17.68
Br	28.5	0.429	18.16
Ι	28.6	0.231	18.51
$OBu^{t}(\mathbf{2a})$	-39.0	6.870	12.70
OAd (2b)	-39.3	6.701	12.72
$SBu^{t}(3)$	2.1	4.160	15.30
$SeBu^{t}(4)$	2.0	2.282	15.62
$TeBu^{t}(5)$	2.1	0.729	16.24
OPh (6)	-18.5	3.028	14.27
SPh (7)	-4.0	0.265	16.41
SePh (8)	-3.0	0.360	16.56
TePh (9)	2.0	0.324	16.63

Х	$= SBu^{t}(3)$	$SeBu^{t}(4)$	$TeBu^{t}(5)$	SePh (8)	TePh (9)
Molecular Formula Molecular Weight	$\mathrm{C_{16}H_{37}CrN_{3}S}$	$\mathrm{C_{16}H_{37}CrN_{3}Se}$	$C_{16}H_{37}CrN_3Te$	$C_{18}H_{33}CrN_3Se$	$C_{18}H_{33}CrN_3Te$
(g/mol)	355.21	403.15	453.15	423.12	473.12
a (Å)	9.9625(8)	13.0772(9)	13.1606(12)	7.6213(6)	8.3363(10)
b (Å)	10.7349(9)	9.4776(7)	9.5014(8)	14.7207(11)	12.2722(15)
c (Å)	19.7412(16)	17.8289(13)	18.0100(16)	18.6479(14)	21.057(3)
α	90	90	90	90	90
β	90	105.233(1)	103.494(1)	90.9310(10)	96.7990(10)
γ	90	90	90	90	90
Volume (Å ³)	2111.25	2132.08	2189.88	2091.85	2139.1
Z	4	4	4	4	4
Space Group	P 2 ₁ 2 ₁ 2 ₁	P 2 ₁ /n	P 2 ₁ /n	P 2 ₁ /c	P 2 ₁ /c
Temperature (K)	173	173	173	173	173
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
\mathbf{D}_{calcd}	1.1185	1.2537	1.3681	1.2537	1.463
R	0.0334	0.0342	0.0342	0.0354	0.0242
R _w	0.0858	0.0763	0.0719	0.0797	0.0603
Cr-E (Å)	2.444(2)	2.3814(1)	2.584(1)	2.395(1)	2.614(1)
Cr-E-C (°)	114.1(2)	108.9(1)	106.0(1)	106.8(1)	103.7(1)
Cr-N(nitrido) (Å)	1.547(1)	1.537(1)	1.540(1)	1.539(3)	1.542(2)
Avg. Cr-N(amido) (Å	1.816(1)	1.815(1)	1.817(1)	1.812(1)	1.817(2)

Crystallographic Data with Selected Bond Distances and Angles for New NCr(NPrⁱ₂)₂X Complexes

Linear and 2nd order polynomial fits for Overlap and BDE vs LDP

Figure 4: Linear and 2^{nd} order polynomial (y = M0 + M1•x + M2•x²) fits for Calc. Overlap

Figure 5: Linear and 2^{nd} order polynomial (y = M0 + M1•x + M2•x²) fits for Calc. BDE

NMR spectra

