SUPPLEMENTARY INFORMATION Aqueous citrato-oxovanadate(IV) solutions for VO₂: synthesis, spectroscopic investigation and thermal analysis

<u>N. Peys</u>^{a,b}, P. Adriaensens^c, S. Van Doorslaer^d, S. Gielis^{a,e}, E. Peeters^a, C. De Dobbelaere^a, S. De Gendt^{b,f}, A. Hardy^{a,e}, M. K. Van Bael^{a,e}

^aHasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Diepenbeek, Belgium ^bIMEC vzw, Heverlee, Belgium

^cHasselt University, Institute for Materials Research, Applied and Analytical Chemistry, Diepenbeek, Belgium ^dUniversity of Antwerp, Department of Physics, BIMEF Laboratory, Antwerp, Belgium ^eIMEC vzw, Division IMOMEC, Diepenbeek, Belgium

fKULeuven, Lab for Physical and Analytical Chemistry, Heverlee, Belgium

Spectroscopic investigation of the $(NH_4)_2C_2O_4.xH_2O$ precipitate

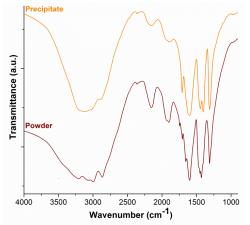


Figure S1: FTIR spectra of the precipitate originating from the synthesis of the aqueous citrato-VO²⁺ precursor solution, and the powder obtained from the vanadium free, ammonium oxalate solution.

Figure S1 shows the FTIR spectra of the precipitate, originating from the synthesis of the aqueous citrato-VO²⁺ precursor solution, and of the vanadium free, ammonium oxalate powder. The assignment of the main vibrations is given Table S2. Both infrared spectra show a strong absorption band between 3200 and 2800 cm⁻¹ due to the O-H stretching mode of the hydrates and the N-H stretching mode of the ammonium ion, broadened by Hbridge formation. Additional N-H stretching modes of the ammonium ion can be observed in both spectra at about 2150 and 1900 cm⁻¹. Typical carboxylate stretch vibrations in (NH₄)₂C₂O₄ appear at 1710, 1655 and 1605 cm⁻¹ for $v_{as}(COO^{-})$ and at 1450 and 1410 cm⁻¹ for $v_s(COO^{-})$.¹⁻⁴ Frost et al. explains the multiplicity of bands by the structural variety of oxalate species in ammonium oxalate (i.e. mono-, di- and polyoxalates).² Furthermore, the band at 1410 cm⁻¹ coincides with the ammonium deformation. The intense absorption peak observed at 1315 cm⁻¹ corresponds to the O-C=O deformation.¹⁻⁴ No vanadyl stretching mode, corresponding to $v(V^{4+}=O)$ or $v(V^{5+}=O)$, are observed around 960 or 1020 cm^{-1.5}

Precipitate	Powder	Assignment	
-			O-H stretching in
3200-2800	3200-2800	v(O-H)	hydrated H ₂ O
(br.)	(br.)	v(N-H)	N-H stretching in
			NH_4^+
2151	2160	v(N-H)	N-H stretching in
1904	1900		NH_4^+
1710	1702	v _{as} (CO ₂ -)	Asymmetric CO ₂ - stretching
1655	1660		
1607	1605		
1450	1460	v _s (CO ₂ -)	Symmetric CO ₂ -
1400	1410		stretching
1400	1410	$\delta(NH_4^+)$	NH4 ⁺ deformation
1315	1313	δ(O-C=O)	O-C=O
			deformation

Table S2: Band assignments of the main vibrations (expressed in cm⁻¹) of the FTIR spectra of the precipitate, formed during the synthesis of the citrato-VO²⁺ solution, and the ammonium oxalate powder. The assignments are based on references¹⁻⁴.

Spectroscopic investigation of the citrato-oxalato- VO^{2+} and citrato- VO^{2+} gel

Gels of both solutions, obtained by drying at 60 °C, are analysed by FTIR Spectroscopy and compared to those of a VO²⁺-free ammonium citrate gel in Figure S3. A full assignment of the measured absorption bands is reported in Table S4. All spectra show a strong absorption band between 3400 and 2800 cm⁻¹ due to (i) the O-H stretching mode of H-bonded hydroxyl groups and absorbed H₂O molecules, (ii) the N-H stretching mode of the ammonium ions and (iii) the C-H stretching mode of the citrate's methylene bridges.³⁻⁵ These absorption bands are broadened by H-bridge formation. For the typical asymmetric and symmetric carboxylate stretch vibrations, differences in the citrato-oxalato-VO2+ and the citrato-VO²⁺ precursor gels are observed. In the presence of oxalate, a first $v_{as}(CO_2^{-})$ appears at 1710 cm⁻¹ and is associated with the ammonium oxalate present in the citrato-oxalato-VO2+ precursor.2 Both the citrato-VO2+ precursor gel and the gel of the VO2+-free ammonium citrate solution have no clear vibration peak at this position. However, in all spectra a similar $v_{as}(CO_2^{-})$ arises around 1590 cm⁻¹ and is assigned to asymmetric stretch vibrations in the carboxylate groups interacting with (i) VO²⁺ in the citrato-oxalato-VO²⁺ and the citrato-VO²⁺ precursor gel and (ii) the ammonium ion in all the studied gels.³⁻⁵ Again in the presence of oxalate, a first $v_s(CO_2)$ appears at 1441 cm⁻¹ and is associated with the ammonium oxalate present in the citrato-oxalato-VO2+ precursor solution.² In the spectra a clear $v_s(CO_2)$ appears around 1400 cm⁻¹ and is assigned to a symmetric stretch vibration of the carboxylate groups interacting with VO²⁺ in the citrato-oxalato-VO²⁺ and the citrato-VO²⁺ precursor gel.2-4 The peak at 1400 cm-1 coincides with that of the ammonium deformation, which explains its presence in the spectrum of the VO²⁺-free ammonium citrate gel. In all spectra, two peaks assigned to the C-O stretching mode in C-OH are observed around 1120 and 1070 cm^{-1.2-4} The vanadyl stretching mode, $v(V^{4+}=O)$, is observed in the gels associated with the citrato-oxalato-VO²⁺ and the citrato-VO²⁺ precursor solution at 960 cm⁻¹, indicating the presence of the oxovanadate species in each precursor solution.⁶ Moreover, the absence of VO₂⁺ species is supported by the absence of the $v(V^{5+}=O)$ stretching mode around 1020 cm^{-1,5} In conclusion, the presence of the citrato-VO2+ complexes and the ammonium groups linking the excess citrate, is suggested by the FTIR spectra of the citrato-oxalato-VO²⁺ and citrato-VO2+ precursor gels. Vibrations owing to the oxalate residues are observed in the spectra of the citratooxalato-VO²⁺ precursor gel, but not in the citrato-VO²⁺ precursor gel, which proofs that oxalate is indeed removed during the precipitation step in the synthesis of the oxalate-poor citrato-VO²⁺ solution.

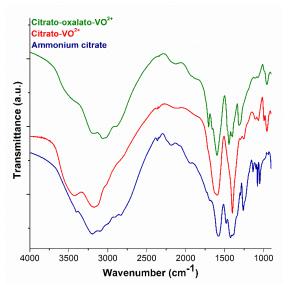


Figure S3: FTIR spectra of gels of the aqueous citrato-oxalato-VO2+, citrato-VO2+ and ammonium citrate solutions obtained after drying at 60 °C.

(1)	(2)	(3)	Assignment	
			ν(О-Н)	O-H stretching in C-OH and H ₂ O
3400- 2800	3400- 2800	3400- 2800	ν(N-H)	N-H stretching in NH_4^+
(br.)	(br.)	(Dr.)	(br.) v(C-H)	C-H stretching in CH ₂
2142 1902	2153 1907	2150 1904	ν(N-H)	N-H stretching in NH4 ⁺
1708	-	-	$v_{as}(CO_2^-)$	Asymmetric CO ₂ - stretching in (NH ₄) ₂ C ₂ O ₄
1595	1587	1594	$v_{as}(CO_2^-)$	Asymmetric CO ₂ ⁻ stretching interacting with VO ²⁺ and/or NH ₄ ⁺
1441	-	-	v _s (CO ₂ ⁻)	Symmetric CO ₂ - stretching in (NH ₄) ₂ C ₂ O ₄
1400	1402	1402	$v_{s}(CO_{2})$	Symmetric CO ₂ ⁻ stretching interacting with VO ²⁺
1119	1115	1138	$\delta(NH_4^+)$	$NH_{4^{+}}$ deformation C-O stretching in C-
1076	1067	1078	v(C-O)	OH, doublet
960	960	-	v(V ⁴⁺ =O)	V4+=O stretching

Table S4: Band assignments of the main vibrations (expressed in cm⁻¹) of the FTIR spectra of the citrato-oxalato-VO²⁺ (1) citrato-VO²⁺ (2) and VO²⁺-free ammonium citrate (3) gels. The assignments are based on references¹⁻⁵.

References

- 1. M. Cadene and A. Fournel, J. Mol. Struct., 1977, **37**, 35–57.
- 2. R. L. Frost, Anal. Chim. Acta, 2004, 517, 207–214.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley & Sons Inc., New York, 5th edn., 1997.
- E. Pretsch, P. Bühlmann, and M. Badertscher, Structure Determination of Organic Compounds: Tables of Spectral Data, Springer-Verlag Berlin Heidelberg, 4th edn., 2009.
- C. Djordjevic, M. Lee, and E. Sinn, *Inorg. Chem.*, 1989, 28, 719–723.
- N. Peys, Y. Ling, D. Dewulf, S. Gielis, C. De Dobbelaere, D. Cuypers, P. Adriaensens, S. Van Doorslaer, S. De Gendt, A. Hardy, and M. K. Van Bael, *Dalt. Trans.*, 2013, **42**, 959–968.