Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Formation of a Dihydroborole by Catalytic Isomerization of a Divinylborane

Raúl A. Adler-Yañez, Gerald Kehr, Constantin G. Daniliuc\$, Brigitta Schirmer\$, Gerhard Erker*

\$ X-Ray structure analyses § DFT calculations

General remarks	S2	
Synthesis and characterization of compounds	S3	
(Diphenylamino)divinylborane (1a)	S3	
(Diisopropylamino)divinylborane (1b)	S5	
1-(Diisopropylamino)-2,3-dihydroborole (3b)	S7	
Compound 8	S11	
Compound 10	S16	
Compound 11	S20	
Reaction of 10 with benzaldehyde	S22	
Compound 12	S23	

General remarks

All reactions were carried out under argon using Schlenk-type glassware or in a glovebox. Solvents were dried or distilled under argon prior to use. For the removal of volatiles and concentration of solutions a vacuum of ca 10⁻¹ mbar (oil pump) was used, unless otherwise stated. The following instruments were used for characterization of the compounds. Differential scanning calorimetry (DSC): DSC Q 20 (TA INSTRUMENT). Elemental analyses: ELEMENTAR Vario El III. ESI mass spectra: Bruker Daltonics MicroTof. IR spectra were recorded on a Varian 3100 FT-IR (Excalibur Series). NMR: Agilent DD2 600 NMR spectrometer (¹H, 600 MHz; ¹³C, 151 MHz; ¹⁹F, 564 MHz; ¹¹B, 192 MHz), Agilent VNMRS 500 spectrometer (¹H, 500 MHz; ¹³C, 126 MHz; ¹⁹F, 470 MHz; ¹¹B, 160 MHz), Bruker AV 300 (¹H, 300 MHz; ¹³C, 76 MHz; ¹⁹F, 282 MHz; ¹¹B, 96 MHz), *Bruker* AC 200 P-FT (¹H, 200 MHz; ¹¹B, 64 MHz). ¹H NMR and ¹³C NMR, chemical shift δ is given relative to TMS (δ ¹H = 0, δ ¹³C = 0) and referenced to the solvent signal; ¹⁹F NMR, chemical shift δ is given relative to CFCl₃ (external reference, δ^{19} F = 0); ¹¹B NMR, chemical shift δ is given relative to BF₃·Et₂O (external reference, δ $^{11}B = 0$). Assignments of the resonances were supported by 2D experiments. Dichloro(diisopropylamino)borane and Dichloro(diphenylamino)borane were prepared by literature known procedures (M. Baudler, A. Marx, Z. anorg. allg. Chem. 1981, 474, 18 - 30). Comercially available reagents were purchased from Sigma-Adlrich, TCI Chemicals, Acros or Merck and used without further purification.

X-Ray diffraction: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (Nonius B.V., 1998); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, *Methods Enzymol.* **1997**, *276*, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, *Acta Crystallogr.* **2003**, *A59*, 228-234); structure solution SHELXS-97 (G. M. Sheldrick, *Acta Crystallogr.* **1990**, *A46*, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 112-122) and graphics, XP (BrukerAXS, 2000). Thermal ellipsoids are shown with 30% probability, *R*-values are given for observed reflections, and *w*R² values are given for all reflections. *Exceptions and special features*: Compound **1a** crystallized with two molecules in the asymmetric unit. For compound **11** one and half benzene molecule were found in the asymmetric unit. CCDC deposition numbers are 982551 to 982553 and 983316.

Synthesis of compounds

Preparation of (Diphenylamino)divinylborane (1a).

A solution of vinylmagnesium bromide (1 M in THF, 12.5 mL, 2.5 eq., 12.5 mmol) was added to a solution of dichloro(diphenylamino)borane (1245 mg, 5 mmol) in diethylether (30 mL) at -78 °C. After the obtained suspension was stirred for 4 days at room temperature it was concentrated in vacuum. Subsequently the residue was taken up in pentane (30 mL) and the resulting suspension was stirred

for overnight. Then the suspension was filtered and the residue was washed with pentane (3 x 15 mL). The organic phases were combined and all volatiles were removed in vacuum. The product was obtained as a colorless oil which completely crystallizes after some minutes (880 mg, 76%).

Crystals suitable for the X-ray single crystal structure analysis were obtained by slow evaporation of a pentane solution at -32 °C.

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K): δ = 7.29 (m, 2H, *m*-Ph), 7.17 (m, 1H, *p*-Ph), 7.09 (m, 2H, *o*-Ph), 6.02 (dd, ³J_{HH} = 18.8 Hz, ³J_{HH} = 14.1 Hz, 1H, =CH), 5.87 (dd, ³J_{HH} = 14.1 Hz, ²J_{HH} = 4.7 Hz, 1H, =CH₂^E), 5.85 (dd, ³J_{HH} = 18.8 Hz, ²J_{HH} = 4.7 Hz, 1H, =CH₂^Z).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ = 148.9 (*i*-Ph), 139.0 (br, =CH),134.1 (=CH₂), 129.1 (*m*-Ph), 128.2 (*o*-Ph), 125.6 (*p*-Ph).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, CD_2CI_2 , 298 K): δ ¹H / δ ¹³C = 7.29 / 129.1 (*m*-Ph), 7.17 / 125.6 (*p*-Ph), 7.09 / 128.2 (*o*-Ph), 6.02 / 139.0 (=CH), 5.87 / 134.1 (=CH₂^{*E*}), 5.85 / 134.1 (=CH₂^{*Z*}).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz,CD₂Cl₂, 298 K) [selected traces]: δ ¹H / δ ¹³C = 7.29 / 148.9, 129.1, 128.2 (*m*-Ph / *i*-Ph, *m*-Ph, *o*-Ph), 7.17 / 148.9, 129.1, 128.2 (*p*-Ph / *i*-Ph, *m*-Ph, *o*-Ph), 7.09 / 148.9, 129.1, 128.2, 125.6 (*o*-Ph / *i*-Ph, *m*-Ph, *o*-Ph).

¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298 K): δ = 39.0 (v_{1/2} ~ 250 Hz).

IR (KBr): Wavenumber / cm⁻¹ = 3060 (w, br), 2953 (w, br), 2338 (w), 1929 (w), 1795 (w), 1950 (w), 1596 (m), 1494 (m), 1431 (m), 1356 (w), 1280 (w), 1017 (w), 957 (w), 834 (w), 764 (s), 698 (w), 540 (w), 474 (w).

Melting Point (DSC): 57 °C.

Decomposition (DSC): 307 °C.

Elemental Analysis: Calcd. for C₁₆H₁₆BN: C, 82.44; H, 6.92; N, 6.01. Found: C, 82.32; H, 6.89; N, 5.91.

¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of (diphenylamino)divinylborane (**1a**).

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of (diphenylamino)divinylborane (**1a**).

X-ray crystal structure analysis of compound 1a: formula C₁₆H₁₆BN, *M* = 233.11, colourless crystal, 0.26 x 0.12 x 0.07 mm, *a* = 8.7384(3), *b* = 16.7458(6), *c* = 18.9805(7) Å, *β* = 96.163(2)°, *V* = 2761.4(2) Å³, ρ_{calc} = 1.121 gcm⁻³, μ = 0.482 mm⁻¹, empirical absorption correction (0.884 ≤ T ≤ 0.967), *Z* = 8, monoclinic, space group *P*2₁/*n* (No. 14), λ = 1.54178 Å, *T* = 223(2) K, ω and φ scans, 24587 reflections collected (±*h*, ±*k*, ±*l*), [(sinθ)/ λ] = 0.60 Å⁻¹, 4809 independent (*R_{int}* = 0.056) and 3697

observed reflections [$l>2\sigma(l)$], 325 refined parameters, R = 0.042, $wR^2 = 0.118$, max. (min.) residual electron density 0.09 (-0.14) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of (diisopropylamino)divinylborane (1b).

Dichloro(diisopropylamino)borane (909 mg, 10 mmol) was dissolved in diethyl ether (30 mL) and the obtained solution was cooled to -78 °C. Then vinylmagnesium bromide solution (1 M in THF, 14 mL, 2.8 eq., 14 mmol) was added and the resulting pale yellow suspension was stirred for 5 days at room temperature. Subsequently all

volatiles were removed in vacuum and the residue was taken up in pentane (30 mL). After the suspension was stirred overnight it was filtered. The obtained solid was washed with pentane (3 x 10 mL). The filtrate and the pentane phases were combined and the solvent was removed in vacuum to give compound **1b** as a colorless oil (350 mg, 43%).

¹**H NMR** (500 MHz, CD_2CI_2 , 298 K): $\bar{o} = 6.45$ (dd, ${}^{3}J_{HH} = 19.5$ Hz, ${}^{3}J_{HH} = 14.0$ Hz, 1H, =CH), 5.75 (br dd, ${}^{3}J_{HH} = 14.0$ Hz, ${}^{2}J_{HH} = 4.4$ Hz, 1H, =CH₂^{*E*}), 5.52 (dd, ${}^{3}J_{HH} = 19.5$ Hz, ${}^{2}J_{HH} = 4.4$ Hz, 1H, =CH₂^{*Z*}), 3.72 (br m, 1H, CH), 1.20 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH₃).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ = 141.1 (br, =CH), 129.9 (=CH₂), 48.2 (CH), 23.6 (CH₃). ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298 K): δ = 37.7 (ν_{1/2} ~ 100 Hz).

IR (KBr): Wavenumber / cm⁻¹ = 3058 (w), 2969 (s), 2933 (m), 2873 (w), 1603 (m), 1449 (s), 1410 (w), 1368 (m), 1322 (s), 1284 (w), 1198 (s), 1159 (m), 1136 (m), 1016 (w), 949 (br, m), 810 (w), 717 (m), 597 (w), 506 (w).

HRMS: Calcd. for $[C_{10}H_{20}BN]H^{\dagger}$: 166.176. Found: 166.175; Calcd. for $[C_{10}H_{20}BN]OH^{-}$: 182.171. Found: 182.170.

Elemental Analysis: Calcd for C₁₀H₂₀BN: C, 72.76; H, 12.21; N, 8.48. Found: C, 71.96; H, 11.94; N, 8.16.

6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0

¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of (diisopropylamino)divinylborane (**1b**).

Preparation of 1-(diisopropylamino)-2,3-dihydroborole (3b).

a) Generation of compound 3b: 8 mol% bis(pentafluorophenyl)borane as catalyst at 200 °C. (Diisopropylamino)divinylborane (1b) (350 mg, 2.12 mmol) was dissolved in toluene (8 mL) using an ampule. Then bis(pentafluorophenyl)borane (60 mg, 0.17 mmol, 0.08 eq.) was added to the solution. After stirring for 15 minutes

the ampule was sealed and taken into an autoclave. Subsequently the autoclave was heated for 36 h at 200 °C. Then, at room temperature, all volatiles were carefully removed in vacuum. The product **3b** was condensed from the obtained yellow residue at 8×10^{-3} mbar and 100 °C as a colorless oil (218 mg, 62%).

¹**H NMR** (500 MHz, [D₈]-toluene, 298 K): δ = 7.13 (br dm, ³J_{HH} = 8.1 Hz, 1H, =CH), 6.27 (dm, ³J_{HH} = 8.1 Hz, 1H, BCH), 3.48 (hept, ³J_{HH} = 6.8 Hz, 1H CH^{*E*}), 3.24 (br hept, ³J_{HH} = 6.9 Hz, 1H, CH^{*Z*}), 2.29 (m, 2H, CH₂), 1.11 (d, ³J_{HH} = 6.9 Hz, 6H, CH₃^{*Z*}), 1.03 (m, 2H, BCH₂), 0.96 (d, ³J_{HH} = 6.8 Hz, 6H, CH₃^{*E*}).

¹³C{¹H} NMR (126 MHz, [D₈]-toluene, 298 K): δ = 162.0 (=CH), 135.4 (br, BCH), 50.5 (CH^{*E*}), 46.4 (CH^{*Z*}), 32.6 (CH₂), 24.7 (CH₃^{*Z*}), 22.4 (CH₃^{*E*}), 15.2 (br, BCH₂).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, [D₈]-toluene, 298 K): δ ¹H / δ ¹³C = 7.13 / 162.0 (=CH), 6.27 / 135.4 (BCH), 3.48 / 50.5 (CH^{*E*}), 3.24 / 46.4 (CH^{*Z*}), 2.29 / 32.6 (CH₂), 1.11 / 24.7 (CH₃^{*Z*}), 1.03 / 15.2 (BCH₂), 0.96 / 22.4 (CH₃^{*E*}).

¹H{¹H} 1D-TOCSY (500 MHz, [D₈]-toluene, 298 K) [selected experiments]: δ ¹H_{irr} / δ ¹H_{res} = 3.48 / 0.96 (CH^{*E*} / CH₃^{*E*}), 3.24 / 1.11 (CH^{*Z*} / CH₃^{*c*}), 2.29 / 7.13, 6.27, 1.03 (CH₂ / =CH, BCH, BCH₂).

¹H{¹H} **NOEDIF** (500 MHz, [D₈]-toluene, 298 K) [selected experiments]: δ ¹H_{irr} / δ ¹H_{res} = 1.11 / 6.27 (CH₃^Z / BCH).

¹¹B{¹H} NMR (160 MHz, [D₈]-toluene, 298 K): δ = 46.6 (v_{1/2} ~ 150 Hz).

IR (KBr): Wavenumber / cm⁻¹ = 2930 (w, br), 1646 (w), 1566 (w), 1451 (m, br), 1368 (m), 1260 (w), 1196 (w), 1099 (w), 1022 (w), 971 (w), 805 (w), 711 (w), 562 (w), 505 (w).

HRMS: Calcd. for $[C_{10}H_{20}BN]H^+$: 166.176. Found: 166.176.

Elemental Analysis: Calcd. for C₁₀H₂₀BN: C, 72.76; H, 12.21; N, 8.48. Found: C, 72.79; H, 12.19; N, 8.66.

¹H NMR (500 MHz, [D₈]-toluene, 298 K) spectrum of 1-(diisopropylamino)-2,3-dihydroborole (**3b**) (method a).

¹¹B{¹H} (160 MHz, [D₈]-toluene, 298 K) spectrum of 1-(diisopropylamino)-2,3-dihydroborole (**3b**) (method a).

b) Generation of compound 3b: 15 mol% bis(pentafluorophenyl)borane as catalyst at 100 °C.

(Diisopropylamino)divinylborane (**1b**) (150 mg, 0.9 mmol) was dissolved in toluene (5 mL) in a Schlenk flask. Then bis(pentafluorophenyl)borane (47 mg, 0.13 mmol, 0.15 eq.) was added and the obtained solution was stirred for 1 h at 100 °C. Subsequently all volatiles were removed slowly in vacuum at room temperature. Finally the product was condensed from the obtained yellow residue at 8×10^{-3} mbar and 100 °C to give compound **3b** (90 mg, 60%).

c) Solvent dependency.

The reactions were carried out in the respective solvent (1mL) with (diisopropylamino)divinylborane (16.5 mg, 0.1 mmol) and bis(pentafluorophenyl)borane (3.5 mg, 0.01 mmol, 10 mol%) in a sealed NMR tube and heated in an autoclave. The conversion was determined by ¹¹B{¹H} NMR measurements.

Solvent	Total time (h) / % Prod.					
Solvent	25 °C			200 °C		
Tol	0.5 / 35	10 / 64	35 / 71	5 / 99	16 / 100	24 / 100
THF	0.5 / 0	10 / 0	35 / 0	5/78	16 / 95	24 / 96
DCM	0.5 / 39	10 / 57	35 / 61	5 / 83	16 / 93	24 / 95
Pentane	0.5 / 15	10 / 40	35 / 45	5 / 57	16 / 68	24 / 73
Et ₂ O	0.5 / 19	10 / 52	35 / 58	5/79	16 / 89	24 / 95

Table 1: Conversion of (diisopropylamino)divinylborane (1b) in different solvents.

d) Catalyst concentration dependency at 100 °C.

The reactions were carried out in [D₈]-toluene (1 mL) with (diisopropylamino)divinylborane (16.5 mg, 0.1 mmol) using different amounts of bis(pentafluorophenyl)borane (1.7 mg: 5 mol%; 3.5 mg: 10 mol%; 5.2 mg: 15 mol%) in sealed NMR tubes at 100 °C. The conversion was determined by ¹¹B{¹H} NMR measurements.

 Table 2: Catalytic conversion of (diisopropylamino)divinylborane (1b) in [D₈]-toluene with different amounts of bis(pentafluorophenyl)borane.

HB(C ₆ F ₅) ₂ / mol%	Temperature / °C	Time h (d)	Conversion %
5	RT	1	10
5	100°C	24 (1)	22
5	100°C	96 (4)	26
5	100°C	264 (11)	28
10	RT	1	12
10	100°C	48 (2)	71
10	100°C	72 (3)	74
10	100°C	360 (15)	81
10	100°C	456 (19)	82
15	RT	1	55
15	100°C	1	99

Catalytic conversion of (diisopropylamino)divinylborane (**1b**) at 100 °C in [D₈]-toluene with different amounts of bis(pentafluorophenyl)borane. $1h^{RT}$: after 1 h at room temperature; 1h: after 1 h at 100 °C.

Comment: Full conversion of (diisopropylamino)divinylborane (**1b**) was achieved in toluene after 1 h at 100 °C with 15% bis(pentafluorophenyl)borane (black). Alternatively full conversion was also achieved at room temperature after 4 days [(diisopropylamino)divinylborane (**1b**) (16.5 mg, 0.1 mmol) with 15% bis(pentafluorophenyl)borane (5.2 mg: 15 mol%)].

Control experiments:

a) (Diisopropylamino)divinylborane (1b) (16.5 mg, 0.1 mmol) in $[D_8]$ -toluene (1 mL) in a sealed NMR tube was heated at 200 °C in an autoclave for 3 days: no product formation was detected.

b) (Diisopropylamino)divinylborane (1b) (16.5 mg, 0.1 mmol) in $[D_8]$ -toluene (1 mL) in a sealed NMR tube was irradiated with a water cooled Hg-high pressure lamp (Philips HPK 125 W), equipped with a quartz glass filter for 72 h at room temperature: no product formation was detected.

Preparation of compound 8.

Divinyl(diphenylamino)borane (1a) (70 mg, 0.3 mmol) was added to a suspension of bis(pentafluorophenyl)borane (208 mg, 0.6 mmol, 2 eq.) in toluene (2 mL) and the reaction mixture was stirred for 20 minutes. Then the suspension was filtered and the filtrate was concentrated to 1 mL. Subsequently pentane (0.5 mL) was added

and the solution was stored for 2 days at -32 °C. The product crystalized as long colorless needles (144 mg, 52%). The obtained crystals were suitable for the X-ray single crystal structure analysis.

IR (KBr): Wavenumber / cm⁻¹ = 3648 (s), 3236 (s), 2913 (s), 2822 (m), 2359 (w), 1960 (w), 1740 (w), 1647 (m), 1309 (m), 1199 (m), 1079 (s), 989 (m), 875 (m), 741 (m), 609 (s) 554 (s).

Melting point (DSC): 79 °C

Decomposition (DSC): 239 °C.

Elemental Analysis: Calcd. for C₄₀H₁₈B₃F₂₀N: C, 51.94; H, 1.96; N, 1.51. Found: C, 51.89; H, 1.85; N, 1.43.

Comment: In CD_2CI_2 solution a mixture of 2 compounds was detected (ratio ca. 79 : 21). The major compound was assigned to compound **8**, the minor compound was tentatively assigned to its isomer **8**'.

Major isomer **8**: ¹**H NMR** (500 MHz, CD₂Cl₂, 298 K): δ = 7.22 (m, 2H, *m*-Ph) 7.12 (m, 1H, *p*-Ph), 7.02 (m, 2H, *o*-Ph), 1.97 (m, 2H, CH₂B), 0.95 (m, 2H, NBCH₂).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ = 148.3 (*i*-Ph),147.5 (dm, ¹J_{FC} ~ 248 Hz, C₆F₅) 143.6 (dm, ¹J_{FC} ~ 257 Hz, C₆F₅), 137.7 (dm, ¹J_{FC} ~ 251 Hz, C₆F₅) ,129.2 (*m*-Ph), 127.9 (*o*-Ph), 126.0 (*p*-Ph), 114.3 (br m, *i*-C₆F₅), 25.8 (br, CH₂B), 11.7 (br, NBCH₂).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, CD₂Cl₂, 298 K): δ ¹H / δ ¹³C = 7.22 / 129.2 (*m*-Ph), 7.12 / 126.0 (*p*-Ph), 7.02 / 127.9 (*o*-Ph), 1.97 / 25.8 (CH₂B), 0.95 / 11.7 (NBCH₂).

¹H,¹³C GHMBC (500 MHz / 126 MHz, CD₂Cl₂, 298 K) [selected traces]: δ ¹H / δ ¹³C = 7.22 / 148.3, 129.2, 127.9 (*m*-Ph / *i*-Ph, *m*-Ph, *o*-Ph), 7.12 / 148.3, 129.2, 127.9 (*p*-Ph / *i*-Ph, *m*-Ph, *o*-Ph), 7.02 / 148.3, 127.9, 126.0 (*o*-Ph / *i*-Ph, *o*-Ph, *p*-Ph), 1.97 / 114.3, 11.7 (CH₂B / *i*-C₆F₅, NBCH₂), 0.95 / 25.8, 11.7 (NBCH₂ / CH₂B, NBCH₂).

¹H{¹H} **NOEDIF** (500 MHz, CD₂Cl₂, 298 K) [selected experiments]: δ ¹H_{irr} / δ ¹H_{res} = 7.02 / 0.95 (o-Ph / NBCH₂).

¹⁹**F NMR** (470 MHz, CD₂Cl₂, 298 K): δ = -130.3 (m, 2F, o-C₆F₅), -149.2 (t, ³J_{FF} = 20 Hz,1F, *p*-C₆F₅), -162.2 (m, 2F, *m*-C₆F₅), [Δδ¹⁹F_{p-m} = 13.0].

¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298 K): δ = 70.7 (v_{1/2} ~ 1200 Hz, B), 47.5 (v_{1/2} ~ 900 Hz, BN).

Minor isomer 8': ¹H NMR (500 MHz, CD₂Cl₂, 298 K)[selected resonances]: δ = 3.08 (q, ³J_{HH} = 6.4 Hz, 1H, CH), 2.00 / 1.66 (each m, each 1H, CH₂B)^t, 1.08 / 0.97 (each m, each 1H, NBCH₂)^t, 1.34 (d, ³J_{HH} = 6.4 Hz, 3H, CH₃), [tentatively assigned].

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K)[selected resonances]: δ = 148.8, 148.4 (*i*-Ph), 129.41, 129.35 (*m*-Ph), 128.1, 127.7 (*o*-Ph), 126.31, 126.25 (*p*-Ph), 37.0 (br, CH), 24.5 (br, CH₂B)^t, 10.8 (br, NBCH₂)^t, 12.2 (CH₃), [tentatively assigned].

¹⁹**F NMR** (470 MHz, CD₂Cl₂, 298 K): δ = -130.1, -131.3 (each m, each 2F, *o*-C₆F₅), -149.2^t, -151.5 (each t, ³J_{FF} = 20.0 Hz, each 1F, *p*-C₆F₅), -162.1, -162.5 (each m, each 2F, *m*-C₆F₅), [$\Delta\delta$ ¹⁹F_{p-m} = 13.0]. ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298 K): δ = 70.7 (v_{1/2} ~ 1200 Hz, B), 47.5 (v_{1/2} ~ 900 Hz, BN).

¹⁹F NMR (470 MHz) and ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298 K) spectra of compound **8** and **8**'.

50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 ${}^{13}C{}^{1}H$ NMR (126 MHz, CD₂Cl₂, 298 K) spectrum of compound **8** and **8**'.

X-ray crystal structure analysis of compound 8: formula $C_{40}H_{18}B_3F_{20}N$, M = 924.98, colourless crystal, 0.16 x 0.08 x 0.03 mm, a = 19.6734(4), b = 6.2270(2), c = 31.1173(8) Å, $\beta = 94.093(2)^\circ$, V = 3802.3(2) Å³, $\rho_{calc} = 1.616$ gcm⁻³, $\mu = 0.162$ mm⁻¹, empirical absorption correction (0.974 $\leq T \leq 0.995$), Z = 4, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 22625 reflections collected ($\pm h$, $\pm k$, $\pm l$), [(sin θ)/ λ] = 0.59 Å⁻¹, 6453 independent ($R_{int} = 0.059$) and 3882 observed reflections [$I > 2\sigma(I)$], 577 refined parameters, R = 0.075, $wR^2 = 0.149$, max. (min.) residual electron density 0.22 (-0.19) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Comment. **1a** + 1 HB(C₆F₅)₂: compound **1a** (23.3 mg, 0.1 mmol) was added to a suspension of bis(pentafluorophenyl)borane (34.5 mg, 0.1 mmol, 1 eq.) in CD_2CI_2 (1 mL) at room temperature and stirred for 10 min. Then the obtained reaction mixture was transferred to an NMR tube and characterized by NMR spectroscopy. The obtained reaction mixture contained compound **8**, **1a** and several not identified compounds.

¹¹B{¹H} NMR (160 MHz, CD_2Cl_2 , 298 K) and ¹⁹F NMR (470 MHz, CD_2Cl_2 , 298 K) spectra of the reaction mixture from (diphenylamino)divinylborane (**1a**) with 1 molar equivalent of bis(pentafluorophenyl)borane.

¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of the reaction mixture from (diphenylamino)divinylborane (1a) with 1 molar equivalent of bis(pentafluorophenyl)borane.

Generation of compound 10.

a) Using (diisopropylamino)divinylborane (1b) and bispentafluorophenyl borane. Bis(pentafluorophenyl)borane (69 mg, 0.2 mmol) was stirred in dichloromethane (1 mL) and (diisopropylamino)divinylborane (33 mg, 0.2 mmol) was added. After stirring for 15 minutes at room temperature all volatiles were

removed in vacuum and a colorless oil was obtained (94.8 mg, 93 %).

¹**H NMR** (600 MHz, CD₂Cl₂, 298 K): δ = 3.36 (hept, ³J_{HH} = 6.7 Hz, 1H, CH^Z), 3.28 (hept, ³J_{HH} = 7.0 Hz, 1H, CH^E), 2.70 (t, ³J_{HH} = 6.8 Hz, 1H, BCH), 1.95, 1.74 (each m, each 1H, CH₂^{CH}), 1.52 (m, 2H, CH₂), 1.28, 1.11 (each m, each 1H, BCH₂), 1.24, 1.23 (each d, ³J_{HH} = 7.0 Hz, 3H, CH₃^E), 0.95, 0.87 (each d ³J_{HH} = 6.7 Hz, each 3H, CH₃^Z).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 298 K): δ = 146.4 (dm, ¹J_{FC} ~ 248 Hz, C₆F₅), 142.7 (dm, ¹J_{FC} ~ 255 Hz, C₆F₅), 137.7 (dm, ¹J_{FC} ~ 252 Hz, C₆F₅), 116.3 (br, *i*-C₆F₅), 56.5 (CH^Z), 46.5 (br, BCH), 45.6 (CH^E), 31.9 (CH₂^{CH}), 27.9 (CH₂), 24.2, 24.1 (CH₃^E), 22.0, 21.5 (CH₃^Z), 21.2 (br, BCH₂).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, CD_2Cl_2 , 298 K): δ ¹H / δ ¹³C = 3.36 / 56.5 (CH^Z), 3.28 / 45.6 (CH^E), 2.70 / 46.5 (BCH), 1.95, 1.74 / 31.9 (CH₂^{CH}), 1.52 / 27.9 (CH₂), 1.28, 1.11 / 21.2 (BCH₂), 1.24 / 24.1 (CH₃^E), 1.23 / 24.2 (CH₃^E), 0.95 / 22.0 (CH₃^Z), 0.87 / 21.5 (CH₃^Z).

¹H,¹³C GHMBC (600 MHz / 151 MHz,CD₂Cl₂, 298 K) [selected trace]: δ ¹H / δ ¹³C = 2.70 / 116.3, 31.9, 27.9 (BCH / *i*-C₆F₅, CH₂^{CH}, CH₂).

¹H{¹H} 1D-TOCSY (600 MHz, CD₂Cl₂, 298 K) [selected experiments]: δ ¹H_{irr} / δ ¹H_{res} = 3.36 / 0.95, 0.87 (CH^{*Z*} / CH₃^{*Z*}), 3.28 / 1.24, 1.23 (CH^{*E*} / CH₃^{*E*}), 2.70 / 1.95, 1.74, 1.52, 1.28, 1.11 (BCH / CH₂^{CH}, CH₂, BCH₂).

¹H{¹H} **NOEDIF** (600 MHz, CD₂Cl₂, 298 K) [selected experiment]: δ ¹H_{irr} / δ ¹H_{res} = 2.70 / 3.36, 1.95, 1.24, 1.23, 0.95, 0.87. (BCH / CH^Z, CH₂^{CH}, CH₃^E, CH₃^Z).

¹⁹**F NMR** (564 MHz, CD₂Cl₂, 298 K): δ = -131.0 (m, 2F, o-C₆F₅), -151.4 (tm, ³J_{FF} = 20 Hz, 1F, *p*-C₆F₅), -162.4 (m, 2F, *m*-C₆F₅), [Δδ¹⁹F_{p-m} = 11.0].

¹¹B{¹H} NMR (192 MHz, CD₂Cl₂, 298 K): δ = 71.7 ($v_{1/2} \sim 700$ Hz, B(C₆F₅)₂), 49.2 ($v_{1/2} \sim 400$ Hz, BN).

¹H NMR (600 MHz, CD₂Cl₂, 298 K) spectrum of compound **10** (method a).

 $^{13}C{^{1}H} NMR (151 MHz, CD_2CI_2, 298 K)$ spectrum of compound **10** (method a).

b) Using 1-(diisopropylamino)-2,3-dihydroborole and bis(pentafluorophenyl)borane.

1-(Diisopropylamino)-2,3-dihydroborole (**3b**) (33 mg, 0.2 mmol) was added to a solution of bis(pentafluorophenyl)borane (69 mg, 0.2 mmol) in dichloromethane (1 mL). After stirring for 15 minutes all volatiles were removed in vacuum and a colorless oil was obtained. (98.1 mg, 96 %).

Comments:

a) Isolation and purification, respectively, of compound **10** by e.g. crystallization from dichloromethane at -70 °C or distillation, was not successful.

b) $1b + 2 \text{ HB}(C_6F_5)_2$: (diisopropylamino)divinylborane (13.2 mg, 0.08 mmol) was added to a suspension of bis(pentafluorophenyl)borane (55.4 mg, 0.16 mmol, 2 eq.) in C_6D_6 (1 mL) at room temperature and stirred for 10 min. The obtained reaction mixture contained compound **10** as the main component, admixed with bis(pentafluorophenyl)borane and other not identified compounds.

 $^{11}\text{B}\{^{1}\text{H}\}$ NMR (160 MHz, C_6D_6, 298 K) spectrum of the reaction mixture.

Preparation of compound 11.

Compound 10 was generated in situ by reaction of (diisopropylamino)divinylborane (1b) (33 mg, 0.2 mmol) and bis(pentafluorophenyl)borane (69 mg, 0.2 mmol) in dichloromethane (2 mL). After stirring the solution for 15 minutes pyridine (16 µL, 0.2 mmol) was added. The solution was stirred for 10 minutes and then concentrated in vacuum to less than 0.5 mL. Subsequently pentane (4 mL) was added and the mixture was stored

at -32 °C for one day. The product precipitates as a white solid which was collected, washed with cold pentane (2 x 1 mL) and dried in vacuum to give compound **11** as a colorless solid (82 mg, 70%).

Crystals suitable for the X-ray single crystal structure analysis were obtained from a benzene/pentane solution of **11** at -32 °C.

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K): δ = 8.72 (br, 2H *o*-py), 8.08 (m, 1H, *p*-py), 7.59 (m, 2H, *m*-py), 3.78 (hept, ³J_{HH} = 6.7 Hz, 1H, CH^Z), 3.23 (hept, ³J_{HH} = 7.0 Hz, 1H, CH^E), 1.91 (br, 1H, BCH), 1.91, 1.44 (each br m, each 1H, CH₂^{CH}), 1.23, 0.25 (each m, each 1H, CH₂), 1.17, 1.15 (each d, ³J_{HH} = 7.0 Hz, each 3H, CH₃^E), 1.02, 0.44 (each d, ³J_{HH} = 6.7 Hz, each 3H, CH₃^Z), 0.87, 0.24 (each br m, each 1H, BCH₂).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ = 147.2 (*o*-py), 141.8 (*p*-py), 125.4 (*m*-py), 52.6 (CH^Z), 45.0 (CH^E), 31.6 (CH₂^{CH}), 25.3 (CH₂), 24.4, 24.2 (CH₃^E), 23.1 (br, BCH), 22.5, 20.2 (CH₃^Z), 21.1 (br, BCH₂). [C₆F₅ not listed].

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, CD₂Cl₂, 298 K): δ ¹H / δ ¹³C = 8.72 / 147.2 (o-py), 8.08 / 141.8 (*p*-py), 7.59 / 125,4 (o-py), 3.78 / 52.6 (CH^Z), 3.23 / 45.0 (CH^E), 1.91 / 23.1 (BCH), 1.91, 1.44 / 31.6 (CH₂^{CH}), 1.23, 0.25 / 25.3 (CH₂), 1.17 / 24.4 (CH₃^E), 1.15 / 24.2 (CH₃^E), 1.02 / 22.5 (CH₃^Z), 0.87, 0.24 / 21.1 (BCH₂), 0.44 / 20.2 (CH₃^Z).

¹H{¹H} 1D-TOCSY (500 MHz, CD₂Cl₂, 298 K) [selected experiments]: δ ¹H_{irr} / δ ¹H_{res} = 8.72 / 8.08, 7.59 (*o-py* / *p-py*, *m*-py), 3.78 / 1.02, 0.44 (CH₃^{*Z*}), 3.23 / 1.17, 1.15 (CH₃^{*E*}), 0.87 / 1.91, 1.91, 1.44, 1.23, 0.25, 0.24 (BCH₂ / BCH, CH₂^{CH}, CH₂^{CH}, CH₂, CH₂, BCH₂).

¹⁹**F NMR** (470 MHz, CD₂Cl₂, 298 K): δ = -129.1, -130.0 (each br, each 2F, *o*-C₆F₅), -159.4, -160.4 (each br, each 1F, *p*-C₆F₅), -164.5, -165.4 (each br, each 2F, *m*-C₆F₅), [Δδ ¹⁹F_{p-m} = 5.1, 5.0].

¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298 K): δ = 52.0 (v_{1/2} ~ 550 Hz, BN), 1.9 (v_{1/2} ~ 250 Hz, py-B).

IR (KBr): Wavenumber / cm⁻¹ = 3675 (w, br), 3286 (w), 3132 (w), 2921 (s, br), 2439 (m), 2214 (w), 1936 (w), 1851 (w), 1647 (m), 1440 (m, br), 1283 (w), 1086 (m, br), 954 (s), 920 (s), 767 (s), 741 (s), 691 (s), 483 (m).

Melting point (DSC): 120 °C.

Decomposition (DSC): ~240 °C.

Elemental Analysis: Calcd. for $C_{27}H_{26}B_2F_{10}N_2$: C, 54.95; H, 4.44; N, 4.75. Found: C, 54.20; H, 4.21; N, 4.49.

X-ray crystal structure analysis of compound 11: formula $C_{27}H_{26}B_2F_{10}N_2 \cdot 1.5 \times C_6H_6$, M = 707.28, colourless crystal, 0.27 x 0.15 x 0.10 mm, a = 10.0640(4), b = 12.5390(5), c = 14.4570(6) Å, $\alpha = 95.573(2)$, $\beta = 101.176(2)$, $\gamma = 104.130(2)^{\circ}$, V = 1715.5(1) Å³, $\rho_{calc} = 1.369$ gcm⁻³, $\mu = 1.011$ mm⁻¹, empirical absorption correction (0.772 $\leq T \leq 0.905$), Z = 2, triclinic, space group $P\overline{1}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 18481 reflections collected (±h, ±k, ±h), [(sin θ)/ λ] = 0.60 Å⁻¹, 5829 independent ($R_{int} = 0.034$) and 5364 observed reflections [$I > 2\sigma(I)$], 455 refined parameters, R = 0.039, $wR^2 = 0.103$, max. (min.) residual electron density 0.23 (-0.19) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Reaction of compound 10 with benzaldehyde: generation of compound 12 and 3b

Compound **10** was generated in situ from (diisopropylamino)divinylborane (16.5 mg, 0.1 mmol) and bis(pentafluorophenyl)borane (34.5 mg, 0.1 mmol) in [D₆]-benzene (1 mL). The solution was stirred for 15 minutes and then benzaldehyde (10.1 μ L, 0.1 mmol) was added. After some seconds a suspension containing a mixture of compound **3b** and **12** was obtained.

 $^{11}B{}^{1}H{}$ (160 MHz, C₆D₆, 298 K) and ^{19}F NMR (470 MHz, C₆D₆, 298 K) spectra of the reaction mixture of compound **10** and benzaldehyde (*).

Control experiment: Preparation of compound 12.

A solution of benzaldehyde (40.4 μ L, 0.4 mmol) in dichloromethane (1 mL) was added to a suspension of bis(pentafluorophenyl)borane (138 mg, 0.4 mmol) in dichloromethane (2 mL) and then stirred for 20 minutes. The obtained suspension was filtered and the collected solid material was washed with cold dichloromethane (2 x 1 mL). Then the solid was dried in vacuum and the product was obtained as a white powder (146 mg, 81%). Crystals suitable for the X-ray single crystal

structure analysis were obtained by slow evaporation of a concentrated solution of 12 in dichloromethane at room temperature.

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 7.14 (m, 2H, *o*-Ph), 7.11 (m, 2H, *m*-Ph), 7.05 (m, 1H, *p*-Ph), 4.81 (s, 2H, CH₂).

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 147.7 (dm, ¹J_{FC} ~ 246 Hz, C₆F₅), 143.2 (dm, ¹J_{FC} ~ 257 Hz, C₆F₅), 137.6 (dm, ¹J_{FC} ~ 253 Hz, C₆F₅),136.8 (*i*-Ph), 128.9 (*m*-Ph), 128.7 (*p*-Ph), 127.0 (*o*-Ph), 109.0 (br m, *i*-C₆F₅), 72.2 (CH₂).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, C_6D_6 , 298 K): δ ¹H / δ ¹³C = 7.14 / 127.0 (*o*-Ph), 7.11 / 128.9 (*m*-Ph), 7.05 / 128.7 (*p*-Ph), 4.82 / 72.2 (CH₂).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, C₆D₆, 298 K) [selected trace]: δ ¹H / δ ¹³C = 4.81 / 136.8, 127.0 (CH₂ / *i*-Ph, *o*-Ph).

¹⁹**F NMR** (470 MHz, C₆D₆, 298 K): δ = -132.2 (br m, 2F, *o*-C₆F₅), -148.7 (br m, 1F, *p*-C₆F₅), -160.8 (br m, 2F, *m*-C₆F₅), [Δδ¹⁹F_{p-m} = 12.1].

¹¹B{¹H} NMR (160 MHz, C₆D₆, 298 K): δ = 40.7 (v_{1/2} ~ 350 Hz).

IR (KBr): Wavenumber / cm^{-1 =} 3064 (m), 2369 (w), 1878 (w), 1831 (w), 1655 (s), 1527 (m), 1260 (m), 1170 (s), 964 (s), 848 (s), 787 (s), 732 (s), 697 (s), 644 (s), 579 (m) 547 (s), 463 (s).

Melting point (DSC): 145 °C.

Decomposition (DSC): 200 °C.

Elemental Analysis: Calcd. for C₁₉H₇BF₁₀O: C, 50.48; H, 1.56. Found: C, 50.44; H, 1.16.

 $^{13}C{^{1}H}$ NMR (126 MHz, C₆D₆, 298 K) spectrum of compound **12**.

X-ray crystal structure analysis of compound 12: formula $C_{19}H_7BF_{10}O$, M = 452.06, colourless crystal, 0.32 x 0.24 x 0.10 mm, a = 7.5636(2), b = 11.1442(5), c = 11.3520(6) Å, $\alpha = 117.035(3)$, $\beta = 93.834(3)$, $\gamma = 95.053(2)^{\circ}$, V = 842.8(1) Å³, $\rho_{calc} = 1.781$ gcm⁻³, $\mu = 1.670$ mm⁻¹, empirical absorption correction (0.617 $\leq T \leq 0.850$), Z = 2, triclinic, space group $P\overline{1}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 9196 reflections collected (±h, ±k, ±l), [(sin θ)/ λ] = 0.60 Å⁻¹, 2852 independent ($R_{int} = 0.036$) and 2721 observed reflections [$l > 2\sigma(l)$], 280 refined parameters, R = 0.037, $wR^2 = 0.099$, max. (min.) residual electron density 0.24 (-0.24) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Collection of calculated thermodynamical data and computational details

All calculations have been performed with the TURBOMOLE 6.3^1 and 6.5^2 suites of programs. The structures have been optimized with the *meta*-GGA functional TPSS³ applying the new D3-dispersion correction with Becke-Johnson damping (denoted as (BJ)).^{4,5} Subsequent single point calculations have been carried out with the more accurate double hybrid density functional B2PLYP-D3(BJ) level.^{6,7} For both calculations the large Gaussian-AO basis set def2-TZVP⁸ and the RI approximation^{9,10} have been used. The final level of theory can therefore be abbreviated as B2PLYP-D3(BJ)/def2-TZVP//TPSS-D3(BJ)/def2-TZVP and has an estimated accuracy of about 1-2 kcal/mol.

The thermodynamic corrections are based on harmonic vibrational frequencies calculated at TPSS-D3/def2-TZVP level with strict convergence criteria and the numerical quadrature grid m5. Low-lying frequencies (effectively those below 100 cm⁻¹) are treated in a quasi-free-rotor approximation in order to avoid errors in the entropy calculation.¹¹ These (free) enthalpy values are denoted $\Delta H(G)$, ΔE marks electronic energies (i.e., not including ZPVE).

For a more detailed description of solvent effects and the accurate treatment of thermodynamic corrections in solvent - here (free) enthalpies of solvation - the COSMO-RS program $^{12-16}$ in the parametrization for dichloromethane has been used. All values are given in kcal/mol.

References

- [1] TURBOMOLE, verison 6.3, R. Ahlrichs et. al., Universität Karlruhe 2008; see http://www.turbomole.com.
- [2] TURBOMOLE, verison 6.5, R. Ahlrichs et. al., Universität Karlruhe 2013; see http://www.turbomole.com.
- [3] J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.
- [4] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [5] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- [6] S. Grimme, J. Chem. Phys., 2006, 124, 034108.
- [7] T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys., 2006, 8, 4398-4401.
- [8] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- [9] K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett., 1995, 240, 283–289.
- [10] C. Hättig and F. Weigend, J. Chem. Phys., 2000, 113, 5154.
- [11] S. Grimme, Chem. Eur. J., 2012, **32**, 9955–9964.
- [12] A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799–805.
- [13] A. Klamt, J. Phys. Chem., 1995, 99, 2224–2235.
- [14] F. Eckert and A. Klamt, AIChE Journal, 2002, 48, 369–385.
- [15] F. Eckert and A. Klamt, COSMOtherm, version C2.1, Release 01.11; COSMOlogic GmbH & Co. KG, Leverkusen, Germany.
- [16] A. Klamt, WIREs Comput. Mol. Sci., 2011, 1, 699–709.

Tab. 1: Electronic reaction energies.

	TPSS-D3	B2PLYP-D3
$1{ m b} ightarrow 2{ m b}$	24.84	27.66
${\bf 2b} \to {\bf 3b}$	-45.86	-49.22
${\bf 1b} \to {\bf 3b}$	-21.02	-21.56

Tab. 2: Thermodynamic corrections and reaction (free) enthalpies for the reactions in the gas phase at $298.15 \mathrm{K}$

	corrections		final B2PLYP-D3(BJ)	
	ΔH	ΔG	$\Delta H_{gas} \Delta G_{gas}$	
$1{ m b} ightarrow 2{ m b}$	-0.92	-0.09	26.74	27.57
${\bf 2b} \rightarrow {\bf 3b}$	1.58	2.08	-47.64	-47.14
${\bf 1b} \to {\bf 3b}$	0.66	1.99	-20.90	-19.57

Tab. 3: Solvent corrections and reaction (free) enthalpies in the solvent dichloromethane at 298.15K.

	corre	ctions	final B2PLYP-D3(BJ)		
	ΔH_{solv}	ΔG_{solv}	$\Delta H_{solution}$	$\Delta G_{solution}$	
$1{ m b} ightarrow 2{ m b}$	-0.70	-0.68	26.04	26.89	
${\bf 2b} \to {\bf 3b}$	0.43	0.26	-47.21	-46.88	
${\bf 1b} \to {\bf 3b}$	-0.26	-0.42	-21.16	-19.99	