Kinetico-mechanistic study on the C-H bond activation of primary benzylamines; cooperative and solid-state cyclopalladation on dimeric complexes

Helena Font,^a Mercè Font-Bardia,^{b,c} Kerman Gómez,^d Gabriel González,^d Jaume Granell,^a Israel Macho^d and Manuel Martínez.^a

^a Departament de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, SPAIN

^b Unitat de Difracció de RX, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB). Universitat de Barcelona, Solé i Sabarís 1-3, E-08028-Barcelona, SPAIN

^c Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals. Facultat de Geologia, Martí i Franquès s/n, E-08028-Barcelona, SPAIN

^d Unitat de Ressonància Magnètica Nuclear, ICIQ - Institut Català d'Investigació Química, Avinguda Països Catalans 16, E-43007 Tarragona, SPAIN

Supporting information

Reaction	Solvent	[Pd] /M	<i>T</i> /°C	P/bar	$k_{\rm fast}/{\rm s}^{-1}$	$k_{\rm slow}/{ m s}^{-1}$
$(1H)_2 \rightarrow (2H)_2$	Toluene	5×10^{-4}	21	1	0.41×10^{-4}	
		5×10^{-4}	31	1	1.5×10^{-4}	
		5×10^{-4}	43	1	6.6×10 ⁻⁴	0.45×10^{-4}
		1×10^{-4}	45	1	8.0×10^{-4}	
		1×10^{-4}	45	600	1.3×10 ⁻³	
		1×10^{-4}	45	1200	2.3×10^{-3}	
		1×10^{-4}	45	1500	3.7×10^{-3}	
		5×10 ⁻⁴	48	1	8.1×10^{-4}	0.90×10^{-4}
		5×10 ⁻⁴	50	1	12×10^{-4}	1.0×10^{-4}
		5×10 ⁻⁴	60	1	28×10 ⁻⁴	1.8×10^{-4}
		5×10 ⁻⁴	70	1		4.0×10^{-4}
		1×10^{-4}	70	400		2.8×10^{-4}
		1×10 ⁻⁴	70	600		2.7×10^{-4}
		1×10 ⁻⁴	70	900		3.7×10 ⁻⁴
		1×10 ⁻⁴	70	1200		4.2×10^{-4}
		1×10 ⁻⁴	70	1500		4.8×10^{-4}
		5×10 ⁻⁴	78	1		6.7×10 ⁻⁴
		5×10 ⁻⁴	88	1		15×10^{-4}
	Acetic acid	5×10 ⁻⁴	20	1	3.5×10 ⁻⁴	
		5×10 ⁻⁴	25	1	7.7×10 ⁻⁴	
		5×10 ⁻⁴	25	400	7.2×10^{-4}	
		5×10 ⁻⁴	25	600	8×10 ⁻⁴	
		5×10^{-4}	25	900	8.7×10^{-4}	
		5×10^{-4}	30	1	1.1×10^{-3}	
		5×10^{-4}	40	1	6.6×10^{-3}	0.4×10^{-4}
		5×10^{-4}	50	1	7.8×10^{-3}	1.1×10^{-4}
		5×10^{-4}	55	1		2.8×10^{-4}
		5×10 ⁻⁴	55	400		2.4×10^{-4}
		5×10 ⁻⁴	55	600		1.5×10^{-4}
		5×10 ⁻⁴	55	900		2.0×10^{-4}
		5×10^{-4}	55	1200		1.0×10^{-4}
		5×10 ⁻⁴	55	1500		1.3×10^{-4}
		5×10 ⁻⁴	60	1		4.4×10^{-4}
		5×10 ⁻⁴	70	1		16×10^{-4}
$(1\text{Cl})_2 \rightarrow (2\text{Cl})_2$	Toluene	5×10^{-4}	35	1	3.8×10 ⁻⁴	
		5×10^{-4}	40	1	6.8×10 ⁻⁴	0.16×10^{-4}
		5×10^{-4}	50	1	14×10^{-4}	0.65×10^{-4}
		5×10^{-4}	60	1	30×10 ⁻⁴	1.4×10^{-4}
		5×10 ⁻⁴	63	1	38×10 ⁻⁴	2.4×10^{-4}
		1×10^{-4}	65	1		2.8×10 ⁻⁴
		1×10 ⁻⁴	65	300		1.10×10 ⁻⁴
		1×10^{-4}	65	600		1.23×10 ⁻⁴
		1×10 ⁻⁴	65	900		1.79×10^{-4}
		1×10^{-4}	65	1200		1.85×10 ⁻⁴
	Acetic acid	1×10^{-4}	30	1	2.0×10^{-4}	

Table S1.- Rate constant data for the monitored cyclometallation processes indicated.

		1×10^{-4}	30	300	1.4×10^{-4}		
		1×10^{-4}	30	600	1.7×10^{-4}		
		1×10^{-4}	30	900	1.6×10^{-4}		
		1×10^{-4}	30	1200	1.8×10^{-4}		
		4×10 ⁻⁴	35	1	0.3×10^{-3}		
		4×10^{-4}	47	1	1.5×10^{-3}		
		4×10^{-4}	56	1	3.6×10^{-3}	0.3×10^{-3}	
		4×10^{-4}	65	1	6.0×10^{-3}	0.9×10^{-3}	
		4×10^{-4}	75	1	0.0×10	3.0×10^{-3}	
$(1\mathbf{F})_{\mathbf{r}} \rightarrow (2\mathbf{F})_{\mathbf{r}}$	Toluene	4×10^{-4}	53	1		3.0×10^{-5}	
	Tolucile	4×10^{-4}	52	1		6.7×10^{-5}	
		4×10^{-4}	70	1		1.4×10^{-4}	
		4×10^{-4}	80	1		1.4×10 2.2×10 ⁻⁴	
	A patia paid	4×10	25	1		3.5×10^{-4}	
	Acetic acid	4×10	23	1		2.5×10	
		4×10^{-4}	34	400		5.2×10^{-4}	
		4×10^{-4}		600		5.0×10^{-4}	
		4×10^{-4}		900		5.2×10 ⁴	
		4×10 ⁻⁴		1000		5.8×10^{-4}	
		4×10 ⁻⁴		1200		5.8×10^{-4}	
		4×10 ⁻⁴		1600		6.3×10 ⁻⁴	
		4×10^{-4}	37	1		5.6×10^{-4}	
		4×10^{-4}	50	1		15×10^{-4}	
$(1\mathbf{CF}_3)_2 \rightarrow (2\mathbf{CF}_3)_2$	Toluene	4×10^{-4}	52	1		2.5×10^{-5}	
		4×10^{-4}	60	1		3.5×10^{-5}	
		4×10^{-4}	70	1		1.6×10^{-4}	
		4×10^{-4}	80	1		2.7×10^{-4}	
	Acetic acid	4×10^{-4}	25	1		6.8×10^{-5}	
		4×10^{-4}	34	400		1.7×10^{-4}	
		4×10^{-4}	34	700		1.6×10^{-4}	
		4×10^{-4}	34	1000		1.5×10^{-4}	
		4×10^{-4}	34	1300		2.0×10^{-4}	
		4×10^{-4}	34	1600		1.7×10^{-4}	
		4×10^{-4}	50	1		10×10^{-4}	
		4×10^{-4}	60	1		37×10^{-4}	
$Pd(AcO)_2 + ClBzNH_2 \rightarrow (2Cl)_2^{a}$	Toluene	1×10 ⁻⁴	42	1	0.1×10 ⁻⁴		
		1×10^{-4}	52	1	0.1×10^{-4}		
		1×10^{-4}	63	1	1 3×10 ⁻⁴		
		1×10^{-4}	65	1	1.3×10		
		1×10^{-4}	65	300	1 3×10 ⁻⁴		
		1×10^{-4}	65	600	1 5×10 ⁻⁴		
		1×10^{-4}	65	900	1.5×10^{-4}		
		1×10^{-4}	65	1200	1.0×10		
		1×10^{-4}	68	1200	2 1×10 ⁻⁴		
	Acetic acid	1×10^{-4}	56	1	0.90×10^{-4}		
		1×10^{-4}	60	1	1 /~10 ⁻⁴		
		1×10^{-4}	65	1	1.4×10 2.2×10 ⁻⁴		
		1×10^{-4}	65	300	2.2×10		
		1×10^{-4}	65	600	1.5×10^{-4}		
		1×10 1×10 ⁻⁴	65	000	1.7×10^{-4}		
		1×10 1×10 ⁻⁴	03 65	900	1.4×10^{-4}		
		1×10	00	1200	2.4×10 2.9×10 ⁻⁴		
		1×10^{-4}	00	1500	2.8	2.8×10 4.0×10 ⁻⁴	
		1×10^{-1}	12		4.0×10 ⁻		
		1×10 ⁻⁺	80	1	12	×10	

$Pd(AcO)_2 + FBzNH_2 \rightarrow (2CF)_2^{a}$	Toluene	3×10 ⁻⁴	59	1	3.0×10^{-5}
		3×10 ⁻⁴	73	1	1.6×10^{-4}
		3×10 ⁻⁴	75	400	2.5×10^{-4}
		3×10 ⁻⁴	75	700	2.7×10^{-4}
		3×10 ⁻⁴	75	1000	3.0×10^{-4}
		3×10 ⁻⁴	75	1300	3.2×10^{-4}
		3×10 ⁻⁴	75	1600	3.7×10^{-4}
		3×10 ⁻⁴	88	1	4.5×10^{-4}
$Pd(AcO)_2 + CF_3BzNH_2 \rightarrow (2CF_3)_2^{a}$	Toluene	3×10 ⁻⁴	49	1	1.1×10^{-5}
		3×10 ⁻⁴	73	1	$2.8 imes 10^{-4}$
		3×10 ⁻⁴	75	400	3.7×10^{-4}
		3×10 ⁻⁴	75	700	4.6×10^{-4}
		3×10 ⁻⁴	75	1000	5.6×10^{-4}
		3×10 ⁻⁴	75	1300	$6.5 imes 10^{-4}$
		3×10 ⁻⁴	75	1600	$7.8 imes 10^{-4}$
		3×10 ⁻⁴	83	1	5.6×10^{-4}

^a One-pot process, [Pd]:[amine] in the 0.8-1.2 range, a single step is observed.

					1
Reaction	Solvent	[Pd] /M	<i>T</i> /⁰C	P/bar	k / s^{-1}
$Pd(AcO)_2 + BzNMeH \rightarrow$	Toluene	1×10^{-4}	36	1	0.40×10^{-4}
		1×10^{-4}	42	1	0.80×10^{-4}
		1×10^{-4}	50	1	2.0×10^{-4}
		1×10^{-4}	50	300	1.4×10^{-4}
		1×10^{-4}	50	600	1.6×10^{-4}
		1×10^{-4}	50	900	1.8×10^{-4}
		1×10 ⁻⁴	50	1200	2.0×10^{-4}
		1×10 ⁻⁴	50	1500	2.1×10^{-4}
		1×10 ⁻⁴	62	1	6.5×10^{-4}
		1×10 ⁻⁴	68	1	12×10^{-4}
	Acetic acid	1×10 ⁻⁴	51	1	0.60×10^{-3}
		1×10 ⁻⁴	56	1	1.1×10^{-3}
		1×10^{-4}	61	1	1.7×10^{-3}
		1×10^{-4}	65	1	2.8×10^{-3}
$Pd(AcO)_2 + BzNMe_2 \rightarrow$	Toluene	1×10 ⁻⁴	29	1	1.8×10^{-3}
		1×10 ⁻⁴	36	1	3.0×10^{-3}
		1×10 ⁻⁴	42	1	4.4×10^{-3}
		1×10^{-4}	50	1	6.6×10^{-3}
		1×10 ⁻⁴	62	1	10×10^{-3}
		1×10^{-4}	69	1	17×10^{-3}

Table S2.- Rate constant data for the monitored one-pot cyclometallation of the secondary (BzNMeH) and tertiary (BzNMe₂) amines indicated, [Pd]:[amine] in the 0.8-1.2 range, a single step is observed.

Figure S1. Eyring plots for the metallation reaction of some of the compounds studied in toluene solution starting both from compounds $(1F)_2$ and $(1CF_3)_2$ (empty points) and palladium acetate plus amine (full points).+