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Figure S1: Temporal evolution of the UV-Vis spectra (a) and the corresponding emission
spectra (upon excitation at 430 nm) (b) upon refluxing at 100°C the reaction mixture in a
4:0.5:4 Cd:Te:GSH stoichiometry.
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Figure S2: Time-resolved luminescence decay profiles of QD540 (green), QD600 (blue),
QD650 (red) in 0.01 M TRIS-HC1 pH 7.4, Aex =370 nm and Aem = 550 nm and the
corresponding fitting according to the values given in the text (back).

Figure S3: TEM image of QD540.

S4



4.0E+06 -

3.5E+06 A

3.0E+06 A

2.5E+06 +

y =6E+11x - 26481

2.0E+06 - Rz =0.9995

1.5E+06

Emission intensity (a.u.)

1.0E+06

5.0E+05

0.0E+00 T
0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06

[QD540] /M

Figure S4: Emission intensity of QD540 in TRIS/HCI1 0.01M, pH 7.3 (Aex = 430 nm, Aey =
540 nm) as a function of the concentration.
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Approximation of the area covered by the GSH from a space filing MM?2
model (ChemBio3D Ultra):

The required space for one GSH molecule on the surface of the QD was estimated from a
space-filling MM2 model, in which the surface of the CdTedS quantum dot was modelled as a
CdS cluster. The area covered by the ligand was approximated modelled as a conical form,
with maximum height z.«x and radius r.

Zmax = (@2 —12) =9.59 A

ALigana = Tr? = 77.0 A

I

a=10.8 A

Figure S5: Approximation of the area covered by the GSH from a space filing MM2 model
(ChemBio3D Ultra).
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Figure S6: Emission spectra of quantum dots emitting at 636 nm before (blue) and after

addition of GSH at room temperature (red, Citrate buffer, pH 8.5).
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Figure S7: *H NMR spectrum of functionalized Nile-Red dyes (1 in d6-DMSO, green and 3
in MeOD, red), 300 MHz.
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Calculation of the Dye/OD ratios of OD-NR1, OD-NR2, OD-NR3, OD-NR4,
OD-NR5, and OD-NR6 from their UV-absorption spectra:

The UV-absorption spectra (A(4)) of the conjugated QDs have been fitted to a linear
combination of the absorption of the Nile-Red (4yx(4)) and of the QD540 (Ayp (1)):

AA) = aAyr(A) + b Agp(1)

The corresponding Dye and QD concentrations were obtained from the populations a and b,
by taking into account the respective extinction coefficients, i.e. 16600 L. mol™.cm™ for the
dye at 535 nm and 70 130 L. mol™.cm™ for the QD 540 at 400 nm.

Values are summarized in Table S1.

Sample Eq. b a [ab] [NR] [NR]/[QD]
QD-NR1 5 1.68 0.18 9.60616E-06 7.67711E-06 0.79918599
QD-NR2 9 3.11 0.55 1.77828E-05 2.34578E-05 1.31912799
QD-NR3 13 2.5 0.49 1.42949E-05 2.08988E-05 1.46197756
QD-NR4 18 2.2 0.45 1.25795E-05 1.91928E-05 1.5257187
QD-NR5 23 2.16 0.46 1.23508E-05 1.96193E-05 1.58850548
QD-NR6 37 2.09 0.52 1.19505E-05 2.21783E-05 1.85584497

Table S2: Factors a and b, and corresponding NR and QD concentrations as well as NR/QD
ratios for QD-NR1, QD-NR2, QD-NR3, QD-NR4, QD-NR5, and QD-NR6 upon addition of
5 to 3 eq. of Nile-Red dye.
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Figure S8: Experimental absorption spectra of Nile-red (green), QD540 (blue) and for
conjugated QDs (red) with increasing dye/QD molar ratio as well as calculated spectra
(purple) : a) QD-NR1, b) QD-NR2, c) QD-NR3, d) QD-NR4, e) QD-NR5, and f) QD-NRG6.
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Figure S9: Normalized emission spectra of unconjugated QDs in absence of Nile-Red (blue),
after mixing with of 23 equivalents of Nile-Red (green) and of conjugated QDs (NR/QD =
2.40, red), 0.01 M TRIS-HCI pH 7.4, Xex = 375 nm.
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Figure S10: Normalized emission spectra of QD540 (blue) and after mixing with of 0, 0.5,
1,2 and 3 equivalents of Nile-Red in 0.01 M TRIS-HCI pH 7.4, Aex = 375 nm.
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Background FRET theory and equations

The overlap integral /(1) between the QDs emission spectrum and the Nile Red absorption
spectrum has been calculated according to Equation (S1) and amounts to 1.27 x 10> M cm™

nm*:

J) = [} Fo(Dea(2* dA (S1)

where Fp(A1) is the normalized emission of the donor (QD) and &4(4) is the absorption
coefficient of the acceptor (Nile Red) at wavelength A.

The Forster radius Ro (nm), ie. the distance at which the efficiency of the FRET is 50%, could
be calculated from the value of /(1) and from the value of the NHs-activated QDs (QD540 in
presence of NHS/EDCI) quantum yield (¢, =0.24) by Equation (S2):

RS =8.79 x 10 5n*¢px%J (1) (S2)

where ¢, is the quantum yield of the donor in the absence of acceptor, y? is the orientation
factor of the donor and acceptor dipoles (assumed to be equal to 2/3 in the case of dynamic
averaging of the donor and acceptor dipoles within the donor lifetime),* n, is the refractive
index of the solution (e.g., n,, = 1.33 for water), N, is Avogadro’s number.

The energy transfer efficiencies have been calculated from the variations of the intensity of
the QDs according to Equation (S3):

I
Epper =1 — ILDA (33)

where [ are the intensities (I) of the donor in absence of acceptor (X,) and for the donor-
acceptor pair (Xp,)-
The distance between the donor and the acceptor, r can be obtained from Equation (S4):

nR§
nR§+76

Epger = (54)

for n donor-acceptor pairs with a Forster radius Ry separated by a distance r.

1 J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum, New York, NY, USA, 2"
edition 1999.
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Figure S11: Time-resolved luminescence decay profiles of unconjugated (—), and of

conjugated QDs with increasing dye/QD molar ratios (QD-NR1,

, QD-NR?2,

, QD-NR3,

— QD-NR4, —, QD-NR5, —, QD-NR6,—) and corresponding tetra-exponential fits. 0.01 M
TRIS-HCI pH 7.4, Aex =370 nm and Aey, = 540 nm.

Sample 1.(ns) | 1o (NS) 3(ns) | 14(ns) | oy (%) | as (%) | a3z (%) | o (%) | <t>(ns)
QD542 5 15 49 0 29.7 53.4 16.9 0 18
QD-NR1 | 4 13 47 0.8* 26.3 33.2 23.7 16.8 17
QD-NR2 |1 6 30 0.5* 28.6 11.9 5.2 54.3 3
QD-NR3 | 2 5 21 0.4* 21.0 10.3 2.7 66.0 2
QD-NR4 |1 5 25 0.3* 21.6 8.8 1.6 68.0 1
QD-NR5 | 0.4* 2 9 0 76.2 18.0 5.8 0 1
QD-NR6 | 0.4* 2 10 0 77.0 18.9 4.1 0 1

*These values are given as an indication of the fitfing an

the estimate

error is around 1 ns.

Table S3: Decay parameters for CdTexSy QDs with increasing dye/QD molar ratios obtained
from time-resolved studies in 0.01 M TRIS-HCI pH 7.4, Aex =370 nm and Aey, = 540 nm.
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Figure S12: Emission spectra of unconjugated (—), and of conjugated QDs with increasing

dye/QD molar ratios (QD-NR1, —, QD-NR2, —, QD-NR3, —, QD-NR4, —, QD-NR5, —,
QD-NR6,—), 0.01 M TRIS-HCI pH 7.4, Aex = 375 nm.

Figure S13: Space filling MM2 model of conjugated QD with a Nile-Red molecule
(ChemBio3D Ultra)
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