Supplementary Materials

Water soluble thin coated CdTeS alloyed Quantum Dots for improved FRET
 applications

Akram Yahia-Ammar, \dagger Aline M. Nonat* ${ }^{*} \dagger$, Anne Boos, \ddagger Jean-Luc Rehspringer, § Zouhair Asfari, \dagger and Loïc J. Charbonnière* ${ }^{*} \dagger$

$广$ Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
\neq Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France § Département de Chimie et des Matériaux Inorganiques, IPCMS, UMR 7504, CNRS/UdS, 23 rue du Loess, BP 20, F-67037 Strasbourg, France
aline.nonat@unistra.fr, l.charbonn@unistra.fr

Table of content

Figure S1: Temporal evolution of the UV-Vis spectra and emission spectra upon refluxing at $100^{\circ} \mathrm{C}$ the reaction mixture in a 4:0.5:4 Cd :Te:GSH stoichiometry.

Figure S3: TEM image of QD540. S4
Figure S4: Emission intensity of QD540 in TRIS/HCl 0.01M, pH 7.3. S5
Figure S5: Area covered by the GSH from a space filing MM2 model S6
Table S1: Optical properties and structural parameters of CdTeS-GSH QDs
at seven different reaction times.
Figure S6: Emission spectra of quantum dots emitting at 636 nm before (blue) and after addition of GSH at room temperature (red, Citrate buffer, pH 8.5).

Figure S7: ${ }^{1}$ H NMR spectrum of functionalized Nile-Red dyes. S8
Calculation of the Dye/QD ratios of QD-NR1, QD-NR2, QD-NR3, QD-NR4, QD-NR5, and QD-NR6 from their UV-absorption spectra S9
Table S2: Factors a and b, and corresponding NR and QD concentrations and NR/QD ratios. S9
Figure S8: Experimental and calculated absorption spectra of Nile-red, QD540 and for conjugated QDs with increasing dye/QD molar ratios. S10
Figure S9: Normalized emission spectra of unconjugated QDs in absence of Nile-Red, after mixing with of 23 equivalents of Nile-Red and of conjugated QDs (NR/QD = 2.40, red), 0.01 M TRIS-HCl pH 7.4. S11
Figure S10: Normalized emission spectra of QD540 and after mixing with of $0,0.5,1.2$ and 3 equivalents of Nile-Red in 0.01 M TRIS-HCl pH 7.4. S11
Background FRET theory and equations S12
Figure S11: Time-resolved luminescence decay profiles of unconjugated and of conjugated QDs with increasing dye/QD molar ratios. S13
Table S3: Decay parameters for $\mathrm{CdTe}_{x} \mathrm{~S}_{\mathrm{y}}$ QDs with increasing dye/QD molar ratios obtained from time-resolved studies in 0.01 M TRIS-HCl. S13
Figure S12: Emission spectra of unconjugated and of conjugated QDs with increasing dye/QD molar ratios, 0.01 M TRIS-HCl pH 7.4. S14
Figure S13: Space filling MM2 model of conjugated QD to one Nile-Red. S14
a)

b)

Figure S1: Temporal evolution of the UV-Vis spectra (a) and the corresponding emission spectra (upon excitation at 430 nm) (b) upon refluxing at $100^{\circ} \mathrm{C}$ the reaction mixture in a 4:0.5:4 Cd:Te:GSH stoichiometry.

Figure S2: Time-resolved luminescence decay profiles of QD540 (green), QD600 (blue), QD650 (red) in 0.01 M TRIS-HCl pH 7.4, $\lambda_{\mathrm{ex}}=370 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=550 \mathrm{~nm}$ and the corresponding fitting according to the values given in the text (back).

Figure S3: TEM image of QD540.

Figure S4: Emission intensity of QD540 in TRIS/HCl $0.01 \mathrm{M}, \mathrm{pH} 7.3\left(\lambda_{\mathrm{ex}}=430 \mathrm{~nm}, \lambda_{\mathrm{em}}=\right.$ 540 nm) as a function of the concentration.

Approximation of the area covered by the GSH from a space filing MM2 model (ChemBio3D Ultra):

The required space for one GSH molecule on the surface of the QD was estimated from a space-filling MM2 model, in which the surface of the CdTedS quantum dot was modelled as a CdS cluster. The area covered by the ligand was approximated modelled as a conical form, with maximum height $\mathrm{z}_{\text {max }}$ and radius r .

$$
\begin{gathered}
z_{\max }=\sqrt{\left(a^{2}-r^{2}\right)}=9.59 \AA \\
A_{\text {Ligand }}=\pi r^{2}=77.0 \AA^{2}
\end{gathered}
$$

Figure S5: Approximation of the area covered by the GSH from a space filing MM2 model (ChemBio3D Ultra).
Table S1 Optical properties as well as chemical formulae of the $\mathrm{CdTe}_{x} \mathrm{~S}_{y}$-GSH QDs at seven different reaction timesand the corresponding density (ρ), diameters ($\mathrm{D}, \mathrm{Th}=$ obtained from Equation 3 and Exp = measured by TEM), volumes (V), as well as their molecular weights: MW (total molecular weight), $\mathrm{MW}_{\text {core }}$ (of the $\mathrm{CdTe}_{x} \mathrm{~S}_{y}$ core only) and total number of GSH per QD.

	Rq (\%)	$\mathrm{D}_{\mathrm{Th}}(\mathrm{nm})$	$\begin{aligned} & \text { FWH } \\ & \text { M } \\ & \hline \end{aligned}$	Em	T (min)	$\mathbf{V}_{\text {Th }}(\mathbf{n m 3})$	$\rho(\mathrm{kg} / \mathrm{m} 3)$	GSH (mmol)	Chemical Formula	$\mathrm{MW}_{\text {core }}$ (g/mol)	MW (g/mol)
E107 3	15.2	2.85	55	555	60	12.1	5.28	1.55	$\mathrm{CdTe}_{0.13} \mathrm{~S}_{0.15}(\mathrm{GSH})_{0.69}$	38314	99100
E107 5	19.9	3.1	61	575	120	15.6	5.13	1.41	$\mathrm{CdTe}_{0.14} \mathrm{~S}_{0.32}(\mathrm{GSH})_{0.47}$	48069	97169
E107 7	21.7	3.2	62	591	180	17.1	5.2	1.35	$\mathrm{CdTe}_{0.12} \mathrm{~S}_{0.33}(\mathrm{GSH})_{0.44}$	53578	107880
E107 8	24.7	3.28	64	601	210	18.5	5.05	1.03	$\mathrm{CdTe}_{0.15} \mathrm{~S}_{0.58}(\mathrm{GSH})_{0.35}$	56351	95466
E1079	28	3.32	69	612	270	19.2	5.01	0.92	$\mathrm{CdTe}_{0.12} \mathrm{~S}_{0.55}(\mathrm{GSH})_{0.22}$	57779	86262
E107 10	25.7	3.35	72	624	375	19.7	5.01	0.82	$\mathrm{CdTe}_{0.11} \mathrm{~S}_{0.54}(\mathrm{GSH})_{0.21}$	59435	86868
E107 11	11.4	3.37	77	647	435	20.03	4.94	0.31	$\mathrm{CdTe}_{0.11} \mathrm{~S}_{0.55}(\mathrm{GSH})_{0.09}$	59586	71130

Figure S6: Emission spectra of quantum dots emitting at 636 nm before (blue) and after addition of GSH at room temperature (red, Citrate buffer, pH 8.5).

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of functionalized Nile-Red dyes ($\mathbf{1}$ in $d 6$-DMSO, green and $\mathbf{3}$ in MeOD, red), 300 MHz .

Calculation of the Dye/QD ratios of QD-NR1, QD-NR2, QD-NR3, QD-NR4, QD-NR5, and QD-NR6 from their UV-absorption spectra:

The UV-absorption spectra $(A(\lambda))$ of the conjugated QDs have been fitted to a linear combination of the absorption of the Nile-Red $\left(A_{N R}(\lambda)\right)$ and of the QD540 $\left(A_{Q D}(\lambda)\right)$:

$$
A(\lambda)=a A_{N R}(\lambda)+b A_{Q D}(\lambda)
$$

The corresponding Dye and QD concentrations were obtained from the populations a and b, by taking into account the respective extinction coefficients, i.e. $16600 \mathrm{~L} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}$ for the dye at 535 nm and $70130 \mathrm{~L} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}$ for the QD 540 at 400 nm .
Values are summarized in Table S1.

Sample	Eq.	b	a	$[Q D]$	$[N R]$	$[N R] /[Q D]$
QD-NR1	5	1.68	0.18	$9.60616 \mathrm{E}-06$	$7.67711 \mathrm{E}-06$	0.79918599
QD-NR2	9	3.11	0.55	$1.77828 \mathrm{E}-05$	$2.34578 \mathrm{E}-05$	1.31912799
QD-NR3	13	2.5	0.49	$1.42949 \mathrm{E}-05$	$2.08988 \mathrm{E}-05$	1.46197756
QD-NR4	18	2.2	0.45	$1.25795 \mathrm{E}-05$	$1.91928 \mathrm{E}-05$	1.5257187
QD-NR5	23	2.16	0.46	$1.23508 \mathrm{E}-05$	$1.96193 \mathrm{E}-05$	1.58850548
QD-NR6	37	2.09	0.52	$1.19505 \mathrm{E}-05$	$2.21783 \mathrm{E}-05$	1.85584497

Table S2: Factors a and b, and corresponding NR and QD concentrations as well as NR/QD ratios for QD-NR1, QD-NR2, QD-NR3, QD-NR4, QD-NR5, and QD-NR6 upon addition of 5 to 3 eq. of Nile-Red dye.

Figure S8: Experimental absorption spectra of Nile-red (green), QD540 (blue) and for conjugated QDs (red) with increasing dye/QD molar ratio as well as calculated spectra (purple) : a) QD-NR1, b) QD-NR2, c) QD-NR3, d) QD-NR4, e) QD-NR5, and f) QD-NR6.

Figure S9: Normalized emission spectra of unconjugated QDs in absence of Nile-Red (blue), after mixing with of 23 equivalents of Nile-Red (green) and of conjugated QDs (NR/QD = 2.40 , red), 0.01 M TRIS- $\mathrm{HCl} \mathrm{pH} 7.4, \lambda_{\mathrm{ex}}=375 \mathrm{~nm}$.

Figure S10: Normalized emission spectra of QD540 (blue) and after mixing with of $0,0.5$, 1,2 and 3 equivalents of Nile-Red in 0.01 M TRIS-HCl pH 7.4, $\lambda_{\text {ex }}=375 \mathrm{~nm}$.

Background FRET theory and equations

The overlap integral $J(\lambda)$ between the QDs emission spectrum and the Nile Red absorption spectrum has been calculated according to Equation (S1) and amounts to $1.27 \times 10^{15} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ $n m^{4}$:
$J(\lambda)=\int_{0}^{\infty} F_{D}(\lambda) \varepsilon_{A}(\lambda) \lambda^{4} d \lambda$
where $F_{D}(\lambda)$ is the normalized emission of the donor (QD) and $\varepsilon_{A}(\lambda)$ is the absorption coefficient of the acceptor (Nile Red) at wavelength λ.
The Förster radius $R_{0}(\mathrm{~nm})$, ie. the distance at which the efficiency of the FRET is 50%, could be calculated from the value of $J(\lambda)$ and from the value of the NHs-activated QDs (QD540 in presence of NHS/EDCI) quantum yield ($\phi_{D}=0.24$) by Equation (S2):
$R_{0}^{6}=8.79 \times 10^{-5} n_{r}^{-4} \phi_{D} \chi^{2} J(\lambda)$
where ϕ_{D} is the quantum yield of the donor in the absence of acceptor, χ^{2} is the orientation factor of the donor and acceptor dipoles (assumed to be equal to $2 / 3$ in the case of dynamic averaging of the donor and acceptor dipoles within the donor lifetime), ${ }^{1} n_{r}$ is the refractive index of the solution (e.g., $n_{r}=1.33$ for water), $N_{A v}$ is Avogadro's number.
The energy transfer efficiencies have been calculated from the variations of the intensity of the QDs according to Equation (S3):
$E_{F R E T}=1-\frac{I_{D A}}{I_{D}}$
where I are the intensities (I) of the donor in absence of acceptor $\left(X_{D}\right)$ and for the donoracceptor pair $\left(X_{D A}\right)$.

The distance between the donor and the acceptor, r can be obtained from Equation (S4):
$E_{F R E T}=\frac{n R_{0}^{6}}{n R_{0}^{6}+r^{6}}$
for n donor-acceptor pairs with a Förster radius R_{0} separated by a distance r.

[^0]

Figure S11: Time-resolved luminescence decay profiles of unconjugated (-), and of conjugated QDs with increasing dye/QD molar ratios (QD-NR1, -, QD-NR2, -, QD-NR3, -, QD-NR4, -, QD-NR5, -, QD-NR6, -) and corresponding tetra-exponential fits. 0.01 M TRIS-HCl pH 7.4, $\lambda_{\mathrm{ex}}=370 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=540 \mathrm{~nm}$.

Sample	$\tau_{1}(\mathrm{~ns})$	$\tau_{2}(\mathrm{~ns})$	$\tau_{3}(\mathrm{~ns})$	$\tau_{4}(\mathrm{~ns})$	$\alpha_{1}(\%)$	$\alpha_{2}(\%)$	$\alpha_{3}(\%)$	$\alpha_{4}(\%)$	$<\tau>(\mathrm{ns})$
QD542	5	15	49	0	29.7	53.4	16.9	0	18
QD-NR1	4	13	47	0.8^{*}	26.3	33.2	23.7	16.8	17
QD-NR2	1	6	30	0.5^{*}	28.6	11.9	5.2	54.3	3
QD-NR3	2	5	21	0.4^{*}	21.0	10.3	2.7	66.0	2
QD-NR4	1	5	25	0.3^{*}	21.6	8.8	1.6	68.0	1
QD-NR5	0.4^{*}	2	9	0	76.2	18.0	5.8	0	1
QD-NR6	0.4^{*}	2	10	0	77.0	18.9	4.1	0	1

*These values are given as an indication of the fitting and the estimated error is around 1 ns .
Table S3: Decay parameters for $\mathrm{CdTe}_{x} \mathrm{~S}_{\mathrm{y}}$ QDs with increasing dye/QD molar ratios obtained from time-resolved studies in 0.01 M TRIS-HCl pH 7.4, $\lambda_{\mathrm{ex}}=370 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=540 \mathrm{~nm}$.

Figure S12: Emission spectra of unconjugated (-), and of conjugated QDs with increasing dye/QD molar ratios (QD-NR1, -, QD-NR2, -, QD-NR3, -, QD-NR4, -, QD-NR5, -, QD-NR6,-), 0.01 M TRIS-HCl pH 7.4, $\lambda_{\text {ex }}=375 \mathrm{~nm}$.

Figure S13: Space filling MM2 model of conjugated QD with a Nile-Red molecule (ChemBio3D Ultra)

[^0]: ${ }^{1}$ J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum, New York, NY, USA, 2 nd edition 1999.

