Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supplementary Materials

Water soluble thin coated CdTeS alloyed Quantum Dots for improved FRET applications

Akram Yahia-Ammar, † Aline M. Nonat*'†, Anne Boos, ‡ Jean-Luc Rehspringer, § Zouhair Asfari, † and Loïc J. Charbonnière*'†

† Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France ‡ Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France § Département de Chimie et des Matériaux Inorganiques, IPCMS, UMR 7504, CNRS/UdS, 23 rue du Loess, BP 20, F-67037 Strasbourg, France aline.nonat@unistra.fr, l.charbonn@unistra.fr

Table of content

Figure S1: Temporal evolution of the UV-Vis spectra and emission spectra upon refluxing at 100°C the reaction mixture in a 4:0.5:4 Cd:Te:GSH stoichiometry.	S 3
Figure S2: Time-resolved luminescence decay profiles of QD540 , QD600 and QD650 in 0.01 M TRIS-HCl pH 7.4.	S4
Figure S3: TEM image of QD540.	S4
Figure S4: Emission intensity of QD540 in TRIS/HCl 0.01M, pH 7.3.	S 5
Figure S5: Area covered by the GSH from a space filing MM2 model	S6
Table S1: Optical properties and structural parameters of CdTeS-GSH QDs at seven different reaction times.	S7
Figure S6: Emission spectra of quantum dots emitting at 636 nm before (blue) and after addition of GSH at room temperature (red, Citrate buffer, pH 8.5).	S8
Figure S7: ¹ H NMR spectrum of functionalized Nile-Red dyes.	S8

Calculation of the Dye/QD ratios of QD-NR1, QD-NR2, QD-NR3, QD-NR4, QD-NR5, and QD-NR6 from their UV-absorption spectra	S 9
Table S2: Factors a and b, and corresponding NR and QD concentrations and NR/QD ratios.	S9
Figure S8: Experimental and calculated absorption spectra of Nile-red, QD540 and for conjugated QDs with increasing dye/QD molar ratios.	S10
Figure S9: Normalized emission spectra of unconjugated QDs in absence of Nile-Red, after mixing with of 23 equivalents of Nile-Red and of conjugated QDs (NR/QD = 2.40 , red), 0.01 M TRIS-HCl pH 7.4.	S11
Figure S10: Normalized emission spectra of QD540 and after mixing with of 0, 0.5, 1.2 and 3 equivalents of Nile-Red in 0.01 M TRIS-HCl pH 7.4.	S11
Background FRET theory and equations	S12
Figure S11: Time-resolved luminescence decay profiles of unconjugated and of conjugated QDs with increasing dye/QD molar ratios.	S13
Table S3: Decay parameters for $CdTe_xS_yQDs$ with increasing dye/QD molar ratios obtained from time-resolved studies in 0.01 M TRIS-HCl.	S13
Figure S12: Emission spectra of unconjugated and of conjugated QDs with increasing dye/QD molar ratios, 0.01 M TRIS-HCl pH 7.4.	S14
Figure S13: Space filling MM2 model of conjugated QD to one Nile-Red.	S14

Figure S1: Temporal evolution of the UV-Vis spectra (a) and the corresponding emission spectra (upon excitation at 430 nm) (b) upon refluxing at 100°C the reaction mixture in a 4:0.5:4 Cd:Te:GSH stoichiometry.

Figure S2: Time-resolved luminescence decay profiles of **QD540** (green), **QD600** (blue), **QD650** (red) in 0.01 M TRIS-HCl pH 7.4, $\lambda_{ex} = 370$ nm and $\lambda_{em} = 550$ nm and the corresponding fitting according to the values given in the text (back).

Figure S3: TEM image of QD540.

Figure S4: Emission intensity of **QD540** in TRIS/HCl 0.01M, pH 7.3 ($\lambda_{ex} = 430$ nm, $\lambda_{em} = 540$ nm) as a function of the concentration.

<u>Approximation of the area covered by the GSH from a space filing MM2</u> model (ChemBio3D Ultra):

The required space for one GSH molecule on the surface of the QD was estimated from a space-filling MM2 model, in which the surface of the CdTedS quantum dot was modelled as a CdS cluster. The area covered by the ligand was approximated modelled as a conical form, with maximum height z_{max} and radius r.

$$z_{max} = \sqrt{(a^2 - r^2)} = 9.59 \text{ Å}$$

 $A_{Ligand} = \pi r^2 = 77.0 \text{ Å}^2$

Figure S5: Approximation of the area covered by the GSH from a space filing MM2 model (ChemBio3D Ultra).

able S1 Optical properties as well as chemical formulae of the CdTe _x S _y -GSH QDs at seven different reaction timesand
he corresponding density (p), diameters (D, Th = obtained from Equation 3 and Exp = measured by TEM), volumes (V), as
vell as their molecular weights: MW (total molecular weight), MW _{core} (of the CdTe _x S _y core only) and total number of GSH
er QD.

	Rq (%)	D _{Th} (nm)	FWH	E	T (min)	$V_{Th}(nm3)$	p (kg/m3)	GSH (mmol)	Chemical Formula	MW _{core}	MM
			Σ							(g/mol)	(g/mol)
E107 3	15.2	2.85	55	555	60	12.1	5.28	1.55	CdTe _{0.13} S _{0.15} (GSH) _{0.69}	38314	99100
E107 5	19.9	3.1	61	575	120	15.6	5.13	1.41	CdTe _{0.14} S _{0.32} (GSH) _{0.47}	48069	97169
E107 7	21.7	3.2	62	591	180	17.1	5.2	1.35	CdTe _{0.12} S _{0.33} (GSH) _{0.44}	53578	107880
E107 8	24.7	3.28	64	601	210	18.5	5.05	1.03	CdTe _{0.15} S _{0.58} (GSH) _{0.35}	56351	95466
E107 9	28	3.32	69	612	270	19.2	5.01	0.92	CdTe ₀₁₂ S _{0.55} (GSH) _{0.22}	57779	86262
E107 10	25.7	3.35	72	624	375	19.7	5.01	0.82	CdTe _{0.11} S _{0.54} (GSH) _{0.21}	59435	86868
E107 11	11.4	3.37	77	647	435	20.03	4.94	0.31	CdTe _{0.11} S _{0.55} (GSH) _{0.09}	59586	71130

Figure S6: Emission spectra of quantum dots emitting at 636 nm before (blue) and after addition of GSH at room temperature (red, Citrate buffer, pH 8.5).

Figure S7: ¹H NMR spectrum of functionalized Nile-Red dyes (1 in *d6*-DMSO, green and 3 in MeOD, red), 300 MHz.

<u>Calculation of the Dye/QD ratios of QD-NR1, QD-NR2, QD-NR3, QD-NR4,</u> QD-NR5, and QD-NR6 from their UV-absorption spectra:

The UV-absorption spectra $(A(\lambda))$ of the conjugated QDs have been fitted to a linear combination of the absorption of the Nile-Red $(A_{NR}(\lambda))$ and of the QD540 $(A_{OD}(\lambda))$:

$$A(\lambda) = a A_{NR}(\lambda) + b A_{OD}(\lambda)$$

The corresponding Dye and QD concentrations were obtained from the populations *a* and *b*, by taking into account the respective extinction coefficients, *i.e.* 16600 L. mol^{-1} .cm⁻¹ for the dye at 535 nm and 70 130 L. mol^{-1} .cm⁻¹ for the QD 540 at 400 nm. Values are summarized in Table S1.

Sample	Eq.	b	а	[QD]	[NR]	[NR]/[QD]
QD-NR1	5	1.68	0.18	9.60616E-06	7.67711E-06	0.79918599
QD-NR2	9	3.11	0.55	1.77828E-05	2.34578E-05	1.31912799
QD-NR3	13	2.5	0.49	1.42949E-05	2.08988E-05	1.46197756
QD-NR4	18	2.2	0.45	1.25795E-05	1.91928E-05	1.5257187
QD-NR5	23	2.16	0.46	1.23508E-05	1.96193E-05	1.58850548
QD-NR6	37	2.09	0.52	1.19505E-05	2.21783E-05	1.85584497

Table S2: Factors *a* and *b*, and corresponding NR and QD concentrations as well as NR/QD ratios for **QD-NR1**, **QD-NR2**, **QD-NR3**, **QD-NR4**, **QD-NR5**, and **QD-NR6** upon addition of 5 to 3 eq. of Nile-Red dye.

Figure S8: Experimental absorption spectra of Nile-red (green), **QD540** (blue) and for conjugated QDs (red) with increasing dye/QD molar ratio as well as calculated spectra (purple) : a) **QD-NR1**, b) **QD-NR2**, c) **QD-NR3**, d) **QD-NR4**, e) **QD-NR5**, and f) **QD-NR6**.

Figure S9: Normalized emission spectra of unconjugated QDs in absence of Nile-Red (blue), after mixing with of 23 equivalents of Nile-Red (green) and of conjugated QDs (NR/QD = 2.40, red), 0.01 M TRIS-HCl pH 7.4, $\lambda_{ex} = 375$ nm.

Figure S10: Normalized emission spectra of **QD540** (blue) and after mixing with of 0, 0.5, 1,2 and 3 equivalents of Nile-Red in 0.01 M TRIS-HCl pH 7.4, $\lambda_{ex} = 375$ nm.

Background FRET theory and equations

The overlap integral $J(\lambda)$ between the QDs emission spectrum and the Nile Red absorption spectrum has been calculated according to Equation (S1) and amounts to $1.27 \times 10^{15} \text{ M}^{-1} \text{ cm}^{-1} \text{ nm}^{4}$:

$$J(\lambda) = \int_0^\infty F_D(\lambda) \varepsilon_A(\lambda) \lambda^4 \, d\lambda \tag{S1}$$

where $F_D(\lambda)$ is the normalized emission of the donor (QD) and $\varepsilon_A(\lambda)$ is the absorption coefficient of the acceptor (Nile Red) at wavelength λ .

The Förster radius R_0 (nm), *ie*. the distance at which the efficiency of the FRET is 50%, could be calculated from the value of $J(\lambda)$ and from the value of the NHs-activated QDs (**QD540** in presence of NHS/EDCI) quantum yield ($\phi_D = 0.24$) by Equation (S2):

(S2)

$$R_0^6 = 8.79 \times 10^{-5} n_r^{-4} \phi_D \chi^2 J(\lambda)$$

where ϕ_D is the quantum yield of the donor in the absence of acceptor, χ^2 is the orientation factor of the donor and acceptor dipoles (assumed to be equal to 2/3 in the case of dynamic averaging of the donor and acceptor dipoles within the donor lifetime),¹ n_r is the refractive index of the solution (e.g., $n_r = 1.33$ for water), N_{Av} is Avogadro's number.

The energy transfer efficiencies have been calculated from the variations of the intensity of the QDs according to Equation (S3):

$$E_{FRET} = 1 - \frac{I_{DA}}{I_D}$$
(S3)

where *I* are the intensities (*I*) of the donor in absence of acceptor (X_D) and for the donor-acceptor pair (X_{DA}) .

The distance between the donor and the acceptor, r can be obtained from Equation (S4):

$$E_{FRET} = \frac{nR_0^6}{nR_0^6 + r^6}$$
(S4)

for *n* donor-acceptor pairs with a Förster radius R_0 separated by a distance *r*.

¹ J.R. Lakowicz, *Principles of Fluorescence Spectroscopy*, Kluwer Academic/Plenum, New York, NY, USA, 2nd edition 1999.

Figure S11: Time-resolved luminescence decay profiles of unconjugated (–), and of conjugated QDs with increasing dye/QD molar ratios (**QD-NR1**, –, **QD-NR2**, –, **QD-NR3**, –, **QD-NR4**, –, **QD-NR5**, –, **QD-NR6**,–) and corresponding tetra-exponential fits. 0.01 M TRIS-HCl pH 7.4, $\lambda_{ex} = 370$ nm and $\lambda_{em} = 540$ nm.

Sample	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	τ_4 (ns)	α ₁ (%)	$\alpha_2(\%)$	$\alpha_{3}(\%)$	α_4 (%)	<\alpha > (ns)
QD542	5	15	49	0	29.7	53.4	16.9	0	18
QD-NR1	4	13	47	0.8*	26.3	33.2	23.7	16.8	17
QD-NR2	1	6	30	0.5*	28.6	11.9	5.2	54.3	3
QD-NR3	2	5	21	0.4*	21.0	10.3	2.7	66.0	2
QD-NR4	1	5	25	0.3*	21.6	8.8	1.6	68.0	1
QD-NR5	0.4*	2	9	0	76.2	18.0	5.8	0	1
QD-NR6	0.4*	2	10	0	77.0	18.9	4.1	0	1

*These values are given as an indication of the fitting and the estimated error is around 1 ns.

Table S3: Decay parameters for CdTe_xS_y QDs with increasing dye/QD molar ratios obtained from time-resolved studies in 0.01 M TRIS-HCl pH 7.4, λ_{ex} =370 nm and λ_{em} = 540 nm.

Figure S12: Emission spectra of unconjugated (—), and of conjugated QDs with increasing dye/QD molar ratios (**QD-NR1**, –, **QD-NR2**, –, **QD-NR3**, –, **QD-NR4**, –, **QD-NR5**, –, **QD-NR6**,–), 0.01 M TRIS-HCl pH 7.4, $\lambda_{ex} = 375$ nm.

Figure S13: Space filling MM2 model of conjugated QD with a Nile-Red molecule (ChemBio3D Ultra)