SUPPORTING INFORMATION

Assignment of the Oxidation States of Zr and Co in a Highly Reactive Heterobimetallic Zr/Co Complex Using X-ray Absorption Spectroscopy (XANES)

Jeremy P. Krogman, James R. Gallagher, Guanghui Zhang, Adam S. Hock, Jeffrey T. Miller, Christine M. Thomas

CONTENTS

Table S1. Pre-edge energies at the Co K-edge for additional commercial reference			
compounds not listed in Table 1.			
Figure S1. Solid state XANES Co K-edge spectra from 7680.0 eV to 7760.0 eV keV of			
complex 1 and the Co^{-1} complex $\text{Na}[\text{Co}(\text{CO})_4]$.			
Figure S2. Solid state XANES Co K-edge spectra from 7680.0 eV to 7760.0 eV of			
complex 1 and the Co^{III} complex $Co(acac)_3$ (acac = acetylacetonate).			
Figure S3. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of	S5		
complex 1 (blue) and its first derivative (red).			
Figure S4. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of			
complex 3 (blue) and its first derivative (red).			
Figure S5. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of	S6		
complex 4 (blue) and its first derivative (red).			
Figure S6. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of	S6		
complex 5 (blue) and its first derivative (red).			
Figure S7. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of			
Na[Co(CO) ₄] (blue) and its first derivative (red).			
Figure S8. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of			
ClCo(PPh ₃) ₃ (blue) and its first derivative (red).			
Figure S9. Solid state XANES Zr K-edge spectrum from 17960.0 eV to 18060.0 eV of			
complex 1 (blue) and its first derivative (red).			
Figure S10. Solid state XANES Zr K-edge spectrum from 17960.0 eV to 18060.0 eV of			
complex 3 (blue) and its first derivative (red).			
Figure S11. Solid state XANES Zr K-edge spectrum from 17960.0 eV to 18060.0 eV of	S9		
complex 5 (blue) and its first derivative (red).			
Figure S12. Solid state XANES Zr K-edge spectrum from 17960.0 eV to 18060.0 eV of	S9		
complex 6 (blue) and its first derivative (red).			
Gaussian09 Complete Reference			
	011		
I able S2. Comparison of selected interatomic distances derived from the DFT-	511		
optimized geometry and the experimentally determined geometry (X-ray			
crystallography) of 1 .			

Sample	Oxidation state	Pre-edge energy (eV)
Co(NH ₃) ₆ Cl ₃	3	7709.7
LiCoO ₂	3	7709.7
Co(acac)₃	3	7709.8
Co(acac) ₂	2	7709.3
Co(acetate) ₂	2	7709.3
CoCl ₂	2	7709.2
CoF ₂	2	7709.2
ClCo(PPh ₃) ₃	1	7708.4
ClZr(MesNP ⁱ Pr ₂) ₃ CoI (3)	1	7708.4
([′] PrNHPPh₂)₃CoI (4)	1	7708.0
HOZr(MesNP ⁱ Pr ₂) ₃ CoCO (5)	0	7707.8
[Co(CO) ₄]Na	-1	No peak
(THF)Zr(MesNPiPr2)3CoN2 (1)	-1	No peak

Table S1. Pre-edge energies at the Co K-edge for compounds in Co oxidation states ranging from +3 to -1, including additional commercial reference compounds not listed in Table 1.

Figure S1. Solid state XANES Co K-edge spectra from 7680.0 eV to 7760.0 eV of complex 1 and the Co^{-I} complex Na[Co(CO)₄].

Figure S2. Solid state XANES Co K-edge spectra from 7680.0 eV to 7760.0 eV of complex 1 and the Co^{III} complex Co(acac)₃ (acac = acetylacetonate). The Co^{III} reference has a pre-edge feature at 7709.8 eV, while the pre-edge feature of 1 is absent (the small shoulder observed in this region is the leading edge of the XANES and not a pre-edge feature). The significantly higher energy of the edge of Co(acac)₃ is indicative of a higher oxidation state, as would be expected.

Figure S3. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of complex 1 (blue) and its first derivative (red). The position of the edge energy is denoted by a vertical dotted line.

Figure S4. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of complex **3** (blue) and its first derivative (red). The position of the edge energy and the pre-edge energy are denoted by vertical dotted lines.

Figure S5. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of complex 4 (blue) and its first derivative (red). The position of the edge energy and the pre-edge energy are denoted by vertical dotted lines.

Figure S6. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of complex **5** (blue) and its first derivative (red). The position of the edge energy and the pre-edge energy are denoted by vertical dotted lines.

S6

Figure S7. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of $Na[Co(CO)_4]$ (blue) and its first derivative (red). The position of the edge energy is denoted by a vertical dotted line.

Figure S8. Solid state XANES Co K-edge spectrum from 7680.0 eV to 7760.0 eV of $ClCo(PPh_3)_3$ (blue) and its first derivative (red). The position of the edge energy is denoted by a vertical dotted line.

Figure S9. Solid state XANES Zr K-edge spectrum from 17960.0 eV to 18060.0 eV of complex **1** (blue) and its first derivative (red). The position of the edge energy is denoted by a vertical dotted line.

Figure S10. Solid state XANES Zr K-edge spectrum from 17960.0 eV to 18060.0 eV of complex **3** (blue) and its first derivative (red). The position of the edge energy is denoted by a vertical dotted line.

Figure S11. Solid state XANES Zr K-edge spectrum from 17960.0 eV to 18060.0 eV of complex **5** (blue) and its first derivative (red). The position of the edge energy is denoted by a vertical dotted line.

Figure S12. Solid state XANES Zr K-edge spectrum from 17960.0 eV to 18060.0 eV of complex **6** (blue) and its first derivative (red). The position of the edge energy is denoted by a vertical dotted line.

Gaussian 09 Full Reference

Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,

H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.

L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;

Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.;

Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.;

Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;

Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo,

J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,

J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg,

J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox,

D. J. Gaussian, Inc., Wallingford CT, 2009.

	Computed (DFT-optimized)	Experimental (X-ray) ¹
Zr-Co	2.41 Å	2.36 Å
Zr-O	2.49 Å	2.46 Å
Zr-N (avg)	2.18 Å	2.15 Å
Co-P (avg)	2.26 Å	2.22 Å
Co-N	1.81 Å	1.83 Å

Table S2. Comparison of selected interatomic distances derived from the DFT-optimized geometry and the experimentally determined geometry (X-ray crystallography) of **1**.¹

¹ Greenwood, B. P.; Rowe, G. T.; Chen, C.-H.; Foxman, B. M.; Thomas, C. M. J. Am. Chem. Soc. **2010**, 132, 44-45.