Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Excited State Evolution towards Ligand Loss and Ligand Chelation at Group 6 Metal Carbonyl Centres

Jennifer C. Manton,^a Saeed Amirjalayer,^b Anthony Coleman,^a Suzanne McMahon,^a Emma C. Harvey,^a Gregory M. Greetham,^c Ian P. Clark,^c Wybren Jan Buma,^b Sander Woutersen,^b Mary T. Pryce,^a Conor Long^{a*}

Supporting Information

Table of Contents

Orbital Composition of $(\eta^6$ -benzophenone)Cr(CO) ₃	2
Excitation Energies and Oscillator Strengths for $(\eta^6$ -benzophenone)Cr(CO) ₃	2
Orbital Composition of (n ⁶ -allylbenzene)Cr(CO) ₃	4
Excitation Energies and Oscillator Strengths for $(\eta^6$ -allylbenzene)Cr(CO) ₃	4
Orbital Composition of (η ⁶ -styrene)Cr(CO) ₃	6
Excitation Energies and Oscillator Strengths for $(\eta^6$ -styrene)Cr(CO) ₃	6
Kinetic Analyses for (η ⁶ -benzophenone)Cr(CO) ₃	8
Kinetic Analyses for (η ⁶ -styrene)Cr(CO) ₃	8
Kinetic Analyses for (η ⁶ -allylbenzene)Cr(CO) ₃	9
13 C nmr of (η^6 -allylbenzene)Cr(CO) ₃	11
Mass Spectrum of (η ⁶ -allylbenzene)Cr(CO) ₃	12

Analysis of excited states and orbital compositions

(eta-6-Benzophenone)Cr(CO)3

Molecule	:	C16H10Cr	04								
Details: #p b3lvp/Tzvp Geom=Check SCF=Tight Pop=Full IOp(3/33=1)											
Source file: benzphenonePt0AOMix.log											
Population analysis: MPA											
473 orbitals(473 canonical) 81 alpha + 81 beta electrons											
Number of fragments: 3											
Fragmen	+ 1	(24 a	toms. 3	26 orbit	als) · Be	nzopheno	ne				
Fragmen	Fragment 1 (24 aLOMS, 320 OFDILAIS): Benzophenone										
Fragmen	+ ?	3 (1 a	toms.	33 orbit	als): Cr	, Erganas					
1 Laginen	C .) (<u> </u>	,	JJ OIDIC							
COMPOST	TTONS	S OF MOLE	CIILAR OR	BITALS (GROSS CO	NTRIBUT	ONS. %)				
AND OVE	RI.AP	POPULATI	ONS (OP)	BETWEEN	FRAGMEN	TS .	0110, 0,				
Alpha	MO•	71	72	73	74	75	76	77	78	79	80
niipiid	110.	HOMO-10	HOMO-9	номо-8	HOMO-7	номо-6	HOMO-5	номо-4	HOMO-3	номо-2	номо-1
Fneraví	• (Vo	-10 45	-10 30	_10_00	_9 13	-8 97	_7 78	-7 61	-7 36	-6 19	=6 01
Energy (+ ~	-10.45	-10.30	-10.00	-9.13	-0.97	-7.70	-7.01	-7.50	-0.19	-0.01
FRAG#	1:	97.87	99.07	99.62	85.21	86.90	99.46	99,92	99.67	3.84	15.14
FRAG#	2:	1.09	0.47	0.15	2.12	1.92	0.09	0.02	0.04	24.06	23.77
FRAG#	3:	1.04	0.46	0.23	12.68	11.18	0.46	0.07	0.28	72.10	61.10
OP(1 &	2)	-0.004	-0.001	0.000	-0.002	0.002	0.000	0.000	-0.001	0.006	0.014
OP(1 &	3)	0.004	0.002	0.001	0.094	0.079	0.001	-0.001	0.001	-0.075	0.030
OP(2 &	3)	0.002	0.000	0.000	-0.004	-0.004	0.000	0.000	0.000	0.085	0.081
01 (2 0	0 /	0.002	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.001
Alpha	MO:	81	82	83	84	85	86	87	88	89	90
-		HOMO	LUMO	LUMO+1	LUMO+2	LUMO+3	LUMO+4	LUMO+5	LUMO+6	LUMO+7	LUMO+8
Enerav(eV):	-5.99	-2.47	-1.41	-1.21	-0.88	-0.56	-0.53	-0.36	0.20	0.30
Svmme	t.rv:	na	na	na	na	na	na	na	na	na	na
=======	=====										
FRAG#	1:	20.44	84.40	83.68	89.48	96.48	17.22	14.54	14.76	50.85	6.78
FRAG#	2:	22.01	7.43	11.58	7.39	2.30	39.36	43.44	54.99	11.16	57.43
FRAG#	3:	57.55	8.17	4.74	3.13	1.22	43.42	42.01	30.25	37.99	35.79
OP(1 &	2)	0.013	-0.036	-0.113	-0.090	-0.008	-0.273	-0.262	-0.510	0.269	0.211
OP(1 &	3)	0.036	-0.106	-0.058	-0.045	-0.014	-0.494	-0.393	-0.722	-1.124	-0.499
OP(2&	3)	0.075	0.039	-0.004	-0.022	-0.001	0.094	0.126	0.039	-1.572	-1.051

Excitation energies and oscillator strengths:

2.5207 eV 491.86 nm f=0.0007 <S**2>=0.000 Excited State 1: Singlet-A 80 -> 82 0.68655 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1961.39734728Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 2.6906 eV 460.80 nm f=0.0001 <S**2>=0.000 0.68920 79 -> 82 Excited State 3: 2.8326 eV 437.71 nm f=0.0666 <S**2>=0.000 Singlet-A 80 -> 83 0.21390 81 -> 82 0.65005 Excited State 4: Singlet-A 3.4022 eV 364.42 nm f=0.0002 <S**2>=0.000 79 -> 84 -0.13267 79 -> 86 -0.29986 79 -> 87 0.11347 80 -> 86 -0.12229 81 -> 83 0.47595 81 -> 84 0.18815 81 -> 86 81 -> 87 0.16583 0.19062 Singlet-A 3.4463 eV 359.76 nm f=0.0012 <S**2>=0.000 Excited State 5: 0.19387 79 -> 83 79 -> 84 0.14587 79 -> 86 0.29752 79 -> 87 0.35630 79 -> 94 -0.15815 80 -> 83 0.12305 80 -> 86 0.11838 81 -> 83 81 -> 86 0.28892 -0.14947

Excited State 79 -> 84 79 -> 86 79 -> 87 80 -> 84 80 -> 86 80 -> 87 81 -> 87	6:	Singlet-A -0.14347 -0.28850 0.21465 0.21471 0.41098 -0.16558 -0.18188	3.4533 eV	359.03 nm	f=0.0007	<s**2>=0.000</s**2>
Excited State 79 -> 83 79 -> 87 79 -> 94 80 -> 86 81 -> 83 81 -> 84 81 -> 87 81 -> 94	7:	Singlet-A 0.12029 0.30706 -0.13376 -0.14962 -0.33790 -0.11313 0.37688 -0.15733	3.5535 eV	348.91 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 79 -> 83 79 -> 88 80 -> 83 80 -> 86 80 -> 87 80 -> 94 81 -> 83 81 -> 84 81 -> 86 81 -> 87	8:	Singlet-A 0.14542 0.15342 -0.14051 0.13203 0.39481 -0.13647 -0.12785 0.16663 0.38172 -0.10333	3.5822 eV	346.11 nm	f=0.0005	<s**2>=0.000</s**2>
Excited State 79 -> 83 79 -> 84 79 -> 87 80 -> 87	9:	Singlet-A 0.60751 0.12473 -0.12438 -0.19170	3.6388 eV	340.73 nm	f=0.0004	<s**2>=0.000</s**2>
Excited State 76 -> 82 78 -> 82	10:	Singlet-A -0.36329 0.57793	3.6487 eV	339.80 nm	f=0.0039	<s**2>=0.000</s**2>

(eta-6-AllylBenzene)Cr(CO)3

Molecule: C12H10CrO3
Details: #P b3lyp/Tzvp Pop=Full SCF=Tight IOp(3/33=1) Guess=Read Geom=Check
Source file: AllylB3LYPTzvpAOMix.log
Population analysis: MPA
378 orbitals(378 canonical) 65 alpha + 65 beta electrons
Number of fragments: 3
Fragment 1 (1 atoms, 33 orbitals): Cr
Fragment 2 (6 atoms, 114 orbitals): (CO)3
Fragment 3 (19 atoms, 231 orbitals): Allylbenzene

Alpha	MO:	61	62	63	64	65	66	67	68	69	70
		HOMO-4	HOMO-3	HOMO-2	HOMO-1	HOMO	LUMO	LUMO+1	LUMO+2	LUMO+3	LUMO+4
Energy(eV):	-8.68	-7.72	-5.98	-5.77	-5.76	-1.27	-1.20	-0.43	-0.38	-0.35
Symme	try:	na	na	na	na	na	na	na	na	na	na
FRAG#	1:	11.03	0.59	71.61	59.84	60.73	5.63	5.17	18.70	40.15	31.50
FRAG#	2:	1.94	0.08	25.16	24.48	24.87	11.63	11.26	13.51	44.38	38.76
FRAG#	3:	87.03	99.32	3.24	15.69	14.40	82.74	83.58	67.79	15.47	29.74
OP(1 &	2)	-0.005	-0.001	0.085	0.083	0.087	-0.005	0.000	0.006	0.144	0.121
OP(1 &	3)	0.080	0.004	-0.066	0.034	0.028	-0.072	-0.076	-0.273	-0.411	-0.282
OP(2 &	3)	0.005	-0.001	0.008	0.014	0.014	-0.141	-0.137	-0.131	-0.187	-0.171
Alpha	MO:	71	72	73	74	75	76	77	78	79	80
-		LUMO+5	LUMO+6	LUMO+7	LUMO+8	LUMO+9	LUMO+10	LUMO+11	LUMO+12	LUMO+13	LUMO+14
Energy(eV):	-0.08	0.46	0.53	0.56	0.64	0.94	0.97	1.23	1.53	1.61
Symme	try:	na	na	na	na	na	na	na	na	na	na
FRAG#	1:	33.22	89.99	26.77	35.73	1.02	21.90	26.61	6.94	6.88	11.01
FRAG#	2:	47.66	-0.84	65.84	57.65	83.75	58.40	61.95	8.27	7.13	8.91
FRAG#	3:	19.12	10.85	7.39	6.62	15.22	19.70	11.44	84.78	85.99	80.09
OP(1 &	2)	0.102	-5.735	-0.506	-1.188	-0.028	-0.251	-0.313	-0.187	-0.453	-2.493
OP(1 &	3)	-1.265	-2.917	-0.253	-0.562	-0.024	-0.123	-0.161	-0.075	-0.097	0.262
OD () C	3)	-0 584	1 057	0 130	0 236	0 075	0 048	0 019	-0 015	0 092	-0 588

Excitation energies and oscillator strengths:

Excited 64 64 65	State -> 66 -> 67 -> 66	1:	Singlet-A 0.10435 0.27280 0.57622	3.2814 eV	377.84 nm	f=0.0000	<s**2>=0.000</s**2>
65	-> 68	-	0.10468				
65	-> 69		0.11827				
This sta	ate for	optimiz	ation and/or se	econd-order c	orrection.		
Total Er	nergy, E	C(TD-HF/	TD-KS) = -1733	3.62655260			
Copying	the exc	ited st	ate density for	r this state	as the 1-pa	rticle Rho	CI density.
Evoited	Stato	2.	Singlet-N	3 3635 00	368 61 nm	f-0 0003	<\$**2>-0 000
63	-> 66	2.	0 17334	3.3033 CV	500.01 111	1 0.0000	10 27 0.000
63	-> 68	-	-0.20217				
63	-> 70		0 28701				
63	-> 77		0 12136				
64	-> 66	_	-0 35026				
65	-> 67		0.38605				
Excited	State	3:	Singlet-A	3.3715 eV	367.75 nm	f=0.0006	<s**2>=0.000</s**2>
63	-> 67		0.17145				
63	-> 69		0.32008				
63	-> 70	-	0.11445				
63	-> 76		0.10391				
64	-> 67		0.45597				
64	-> 69		0.15003				
64	-> 70	-	0.13439				
65	-> 66		0.23906				

Excited State	4:	Singlet-A	3.4710 eV	357.20 nm	f=0.0005	<s**2>=0.000</s**2>
$63 \rightarrow 66$ $63 \rightarrow 67$ $63 \rightarrow 69$ $64 \rightarrow 66$ $64 \rightarrow 69$ $65 \rightarrow 66$ $65 \rightarrow 66$ $65 \rightarrow 66$		0.38937 0.18898 0.22602 0.10703 -0.16020 -0.21116 -0.15145				
65 -> 68 65 -> 69 65 -> 70 65 -> 77		-0.15558 0.18973 0.18783 0.10633				
Excited State 63 -> 66 63 -> 67 63 -> 68 63 -> 70 64 -> 66 64 -> 70 65 -> 66 65 -> 67 65 -> 69 65 -> 70 65 -> 70	5:	Singlet-A 0.36252 -0.19823 -0.10601 0.14907 0.26628 -0.16696 0.15221 -0.19903 0.13403 -0.18769 -0.16025 -0.10221	3.4869 eV	355.58 nm	f=0.0008	<s**2>=0.000</s**2>
Excited State 63 -> 67 64 -> 67 64 -> 69 64 -> 76 65 -> 68 65 -> 70	6:	Singlet-A -0.33550 0.33636 -0.32849 -0.10621 -0.15130 0.22968	3.5297 eV	351.26 nm	f=0.0006	<s**2>=0.000</s**2>
Excited State 63 -> 67 63 -> 71 64 -> 66 64 -> 67 64 -> 68 64 -> 69 64 -> 70 65 -> 69 65 -> 70 65 -> 76	7:	Singlet-A -0.15544 -0.13035 0.13049 0.20857 -0.20867 0.18149 0.26984 0.38285 -0.21478 0.11837	3.5393 eV	350.31 nm	f=0.0006	<s**2>=0.000</s**2>
Excited State 63 -> 66 63 -> 69 63 -> 70 63 -> 77 64 -> 66 64 -> 68 64 -> 70 64 -> 77 65 -> 67 65 -> 69	8:	Singlet-A 0.40084 0.17647 -0.25412 -0.21074 -0.15001 -0.16972 -0.10205 0.18993 0.10362 0.13734 -0.13873	3.6247 eV	342.05 nm	f=0.0021	<s**2>=0.000</s**2>
Excited State 63 -> 67 63 -> 69 63 -> 70 63 -> 76 64 -> 67 64 -> 69 65 -> 68 65 -> 70	9:	Singlet-A 0.47167 -0.22788 0.18618 -0.11463 0.14142 -0.23702 0.12861 -0.14148	3.6868 eV	336.29 nm	f=0.0015	<s**2>=0.000</s**2>
Excited State 63 -> 68 63 -> 69 63 -> 70 64 -> 68 64 -> 70 65 -> 69	10:	Singlet-A 0.12489 -0.23918 -0.14510 0.23100 -0.36353 0.38874	3.9034 eV	317.63 nm	f=0.0001	<s**2>=0.000</s**2>

(eta-6-Styrene)Cr(CO)3

Molecule: C11H8CrO3
Details: #P b3lyp/Tzvp SCF=Tight Pop=Full IOp(3/33=1) Guess=Read Geom=Check
Source file: StyreneB3LYPTzvpAOMix.log
Population analysis: MPA
347 orbitals(347 canonical) 61 alpha + 61 beta electrons
Number of fragments: 3
Fragment 1 (16 atoms, 200 orbitals): Styrene
Fragment 2 (6 atoms, 114 orbitals): C0 Ligands
Fragment 3 (1 atoms, 33 orbitals): Cr

Alpha	MO:	51	52	53	54	55	56	57	58	59	60
		HOMO-10	HOMO-9	HOMO-8	HOMO-7	номо-б	HOMO-5	HOMO-4	HOMO-3	HOMO-2	HOMO-1
Energy(eV):	-10.96	-10.90	-10.87	-10.60	-10.31	-9.56	-9.00	-7.67	-6.03	-5.83
Symme	try:	na	na	na	na	na	na	na	na	na	na
FRAG#	1:	52.18	6.97	12.81	95.47	98.45	90.95	85.85	90.91	3.06	15.31
FRAG#	2:	38.51	73.20	69.14	3.77	0.96	2.21	2.22	1.47	24.76	24.29
FRAG#	3:	9.31	19.83	18.05	0.77	0.59	6.83	11.93	7.62	72.18	60.40
OP(1 &	2)	-0.048	0.006	0.005	0.000	0.000	-0.011	-0.001	-0.001	0.007	0.013
OP(1 &	3)	0.011	-0.001	-0.004	0.000	0.004	0.050	0.090	0.027	-0.067	0.036
OP(2 &	3)	0.061	0.149	0.139	0.005	0.000	-0.001	-0.005	0.000	0.086	0.084
Alpha	MO:	61	62	63	64	65	66	67	68	69	70
÷		HOMO	LUMO	LUMO+1	LUMO+2	LUMO+3	LUMO+4	LUMO+5	LUMO+6	LUMO+7	LUMO+8
Energy(eV):	-5.76	-1.85	-1.27	-0.44	-0.40	-0.20	0.03	0.42	0.50	0.51
Symme	try:	na	na	na	na	na	na	na	na	na	na
FRAG#	1:	18.73	84.56	82.57	17.22	12.56	17.73	62.38	12.06	5.90	10.30
FRAG#	2:	23.37	8.17	11.88	39.58	46.36	49.67	24.92	2.47	67.33	62.66
FRAG#	3:	57.91	7.27	5.55	43.21	41.09	32.59	12.70	85.48	26.77	27.03
OP(1 &	2)	0.013	-0.076	-0.142	-0.277	-0.239	-0.551	-0.020	0.931	0.088	0.167
OP(1 &	3)	0.024	-0.085	-0.077	-0.421	-0.393	-1.056	-0.238	-2.471	-0.096	-0.340
OP(2 &	3)	0.082	0.026	0.001	0.108	0.157	0.087	-0.253	-5.174	-0.383	-0.759

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.9053 eV 426.75 nm f=0.0010 <S**2>=0.000 60 -> 62 0.68708 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1694.31620642 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited S 59 - 59 - 60 - 61 -	State -> 62 -> 65 -> 63 -> 62	2:	Singlet-A 0.60470 -0.14113 0.13598 0.25997	3.0587	eV	405.35 nm	f=0.0045	<s**2>=0.000</s**2>
Excited S 59 - 60 - 61 - 61 -	State -> 62 -> 63 -> 62 -> 64	3:	Singlet-A -0.30536 0.27159 0.53484 -0.11349	3.1145	eV	398.09 nm	f=0.0296	<s**2>=0.000</s**2>
Excited S 59 - 60 - 61 - 61 - 61 -	State -> 64 -> 63 -> 64 -> 63 -> 64 -> 65	4:	Singlet-A -0.22044 0.14604 0.10627 0.58314 0.16741 0.10826	3.3052	eV	375.12 nm	f=0.0001	<\$**2>=0.000
Excited S 59 - 59 - 59 - 59 - 60 - 60 - 61 - 61 -	State -> 63 -> 64 -> 73 -> 64 -> 65 -> 63 -> 65	5:	Singlet-A 0.42045 0.40944 -0.10884 0.10863 0.11139 -0.16243 0.17437 0.10736	3.4452	eV	359.87 nm	f=0.0008	<s**2>=0.000</s**2>

Excited State 59 -> 63 59 -> 65 60 -> 63 60 -> 64 60 -> 65 61 -> 63 61 -> 64 61 -> 65	6:	Singlet-A -0.11737 -0.27126 0.10561 0.36947 -0.23310 -0.22081 0.28834 0.14274	3.4625 eV	358.08 nm	f=0.0010	<s**2>=0.000</s**2>
Excited State 59 -> 65 59 -> 66 60 -> 64 60 -> 65 61 -> 64 61 -> 65	7:	Singlet-A 0.17474 0.13512 0.25856 0.23351 -0.25968 0.42173	3.5343 eV	350.80 nm	f=0.0006	<s**2>=0.000</s**2>
Excited State 59 -> 63 59 -> 64 59 -> 65 59 -> 70 59 -> 74 60 -> 64 60 -> 64 60 -> 65 61 -> 62 61 -> 63 61 -> 65 61 -> 65 61 -> 72	8:	Singlet-A 0.16564 -0.15708 0.36654 0.10249 0.10652 -0.14267 -0.18440 0.11514 -0.20639 0.30638 0.13922 -0.11738	3.5560 eV	348.67 nm	f=0.0032	<s**2>=0.000</s**2>
Excited State 59 -> 63 59 -> 64 59 -> 65 59 -> 72 60 -> 65 60 -> 72 61 -> 64	9:	Singlet-A 0.49989 -0.25657 -0.17466 0.10731 0.25381 -0.10337 0.10447	3.6396 eV	340.65 nm	f=0.0014	<s**2>=0.000</s**2>
Excited State 59 -> 64 60 -> 63 60 -> 64 60 -> 65 61 -> 64 61 -> 65	10:	Singlet-A 0.28325 0.12926 -0.23060 0.37417 0.32438 0.17671	3.8885 eV	318.85 nm	f=0.0029	<s**2>=0.000</s**2>

****** Kinetic Analyses Kinetic Analysis of (eta-6-benzophenone)Cr(CO)3 Transient signals 470 nm excitation 1965 Band Single Expontential Curve Fitting Standard Error Value -4.19763E-4 -0.00206 -4.19763E-44.81883E-5-0.002065.47435E-5-1.27178E-111.07136E-12 1965 уO 1965 A1 1965 t1 Number of Points 86 Degrees of Freedom 83 Reduced Chi-Sqr 2.18542E-8 Residual Sum of Squares 1.8139E-6 Adj. R-Square 0.94388 Fit Status Succeeded(100) 2008 Band Single Exponential Curve Fitting Value Standard Error 1.28339E-4 у0 г д 1.28339E-4 0.00132 6.77533E-12 1.39461E-5 3.60763E-5 3.51052E-13 2008 2008 A1 2008 tl Number of Points 86 Degrees of Freedom 83 Reduced Chi-Sqr 4.94448E-9 Residual Sum of Squares 4.10392E-7 Adj. R-Square 0.96038 Fit Status Succeeded(100) 320 nm Excitation 1843 Single Exponential Curve Fitting Value Standard Error 6.15733E-6 1843 УO 6.38375E-4 -3.37668E-4 7.32654E-6 -5.18538E-11 3.04456E-12 Al tl 1843 1843 Number of Points 69 Degrees of Freedom 66 Reduced Chi-Sqr 2.774E-10 Residual Sum of Squares 1.83084E-8 Adj. R-Square 0.96918 Fit Status Succeeded(100) Fit Status Kinetic Analysis of (eta-6-Styrene)Cr(CO)3 Transient signals 400 nm Excitation Grow-in of reactive excited state 1966 Single Exponential Curve Fitting Standard Error Value УO 1.00045E-4 1.14507E-4 1966 0.00171 1966 A1 -0.00182 -2.01035E-12 3.59568E-13 1966 t1 Number of Points 9 Degrees of Freedom 6 Reduced Chi-Sqr 6.06619E-9

Residual Sum of Squares 3.63972E-8

Adj. R-Square 0.96969 Fit Status Succeeded(100) Recovery of Parent Absorbances 1983 Band Value Standard Error -0.00297 4.27297E-5 -0.00495 1.13001E-4 -2.57462E-11 1.08249E-12 -0.00297 -0.00495 1983 y0 1983 A1 1983 t1 Number of Points 17 Degrees of Freedom 14 6.03311E-9 8.44636E-8 Residual Sum of Squares Adj. R-Squares Adj. R-Square 0.99541 Fit Status Succeeded(100) Decay of Reactive Excited State 1966 Band
 Value
 Standard Error

 1966
 y0
 -1.34211E-4
 1.67078E-5

 1966
 A1
 0.00209
 1.96177E-5

 1966
 t1
 4.98648E-11
 1.2656E-12
 Number of Points 17 Degrees of Freedom 14 Residual Sum of Squares 5.87627F ^ Adj. R-Squares Adj. R-Square 0.99861 Fit Status Succeeded(100) Kinetic Analysis of (eta-6-Allylbenzene)Cr(CO)3 Transient signals 400 nm Excitation Grow-in of reactive excited state 1958 Band
 Value
 Standard Error

 1958
 y0
 9.15279E-4
 3.33429E-5

 1958
 A1
 -0.00129
 7.9541E-5

 1958
 t1
 -1.30047E-12
 1.61119E-13
 1958 Number of Points 9 Degrees of Freedom 6 Deduced Chi Sar Residual Sum of Squares 9.60701P.0 Adi. R-Source Adj. R-Square 0.98122 Fit Status Fit Status Succeeded(100) Decay of Reactive Excited State 1958 Band Value Standard Error -1.91262E-5 7.83047E-6 уO 1958
 1958
 y0
 -1.91262E-5
 7.83047E-6

 1958
 A1
 0.00113
 1.22143E-5

 1958
 t1
 4.24781E-11
 1.09932E-12
 Number of Points 16 Degrees of Freedom 13 Reduced Chi-Sqr 1.10589E-10 Residual Sum of Squares 1.43765E-9 Adj. R-Square 0.99855 Fit Status Succeeded(100)

Grow-in of CO-loss

9

1918 Band

1918 1918 1918	y0 A1 t1	Value 0.00114 -0.00131 -3.70118E-11	Standard Error 1.71716E-5 3.23346E-5 1.97781E-12
Number	of Poin	ts 16	

Degrees of Freedom	13
Reduced Chi-Sqr	6.28767E-10
Residual Sum of Square	s 8.17397E-9
Adj. R-Square	0.99359
Fit Status	Succeeded(100)

 $(\eta^{6}\text{-Allylbenzene})\,\text{Cr}\,(\text{CO})_{\text{3}}$ Analytical Data ^{13}C nmr in $\text{C}_{6}\text{D}_{12}$

