Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting information

Design and development of POCN-pincer palladium catalysts for C–H bond arylation of azoles with aryl iodides

Shrikant M. Khake,^a Vineeta Soni,^a Rajesh G. Gonnade^b and Benudhar Punji^{*a}

^aOrganometallic Synthesis and Catalysis Group, Chemical Engineering Division, CSIR–National Chemical Laboratory (CSIR–NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, INDIA. Phone: + 91-20-2590 2733, Fax: + 91-20-2590 2621, E-mail: <u>b.punji@ncl.res.in</u>

^bCentre for Material Characterization, CSIR–National Chemical Laboratory (CSIR–NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, INDIA

Contents

		Page #
1.	Table S1. Optimization of catalytic reaction conditions	S 3
2.	Characterization data for 2-arylated azoles	
	2.1 Characterization data for compounds 8	S 4
	2.2 Characterization data for compounds 10	S 10
3.	X-ray structure determination	S14
4.	Structural data for 2a	
	4.1 Table S2. Crystal data and structure refinement for 2a	S15
	4.2 Table S3. Bond lengths and angles for 2a	S16
5.	Structural data for 2b	
	5.1 Table S4. Crystal data and structure refinement for 2b	S 19
	5.2 Table S5. Bond lengths and angles for 2b	S20
6.	References	S23
7.	NMR spectra of ligands and complexes	
	7.1 NMR spectra of ligands 1a and 1b	S24

	7.2 NMR spectra of complexes 2a-5a	S27
8.	³¹ P NMR spectra of (^{iPr2} POCN ^{iPr2})Pd-species during resting state study	
	8.1 In presence of CuI	S34
	8.2 In presence of CuOAc	S35
9.	¹ H and ¹³ C NMR spectra of compounds 8	S36
10.	¹ H and ¹³ C NMR spectra of compounds 10	S 51

1. Table S1. Optimization of catalytic reaction conditions.

[]	N Н	+	2a (0.5	mol%)	
Ľ	s "		Cul (5	mol %) 🌷 🖔	S S
			Base, S	Solvent	
			120	O°C	
	Entry	Base	Solvent	Yield $(\%)^a$	
	1	Na ₂ CO ₃	DMF	< 5 ^b	
	2	K ₂ CO ₃	DMF	34	
	3	K ₃ PO ₄	DMF	88	
	4	Cs ₂ CO ₃	DMF	97	
	5	CsOAc	DMF	11	
	6	Cs ₂ CO ₃	DMSO	47	
	7	Cs ₂ CO ₃	DMAc	11	
	8	Cs ₂ CO ₃	dioxane	14	
	9	Cs ₂ CO ₃	toluene	< 5 ^b	
	10 ^c	Cs ₂ CO ₃	DMF	65	
	11 ^d	Cs ₂ CO ₃	DMF	21	
	12 ^e	Cs ₂ CO ₃	DMF	< 2 ^b	
	13^{t}	Cs ₂ CO ₃	DMF	47	1

Conditions: Benzothiazole (0.5 mmol), 4-iodotoluene (0.75 mmol), base (0.75 mmol), solvent (1.0 mL). ^aIsolated yields, ^bNMR yields, ^c0.1 mol % of **2a** after 48 h, ^dwithout CuI, ^ewithout catalyst **2a**, ^femploying **2b** catalyst.

2. Characterization data for 2-arylated azoles

2.1. Characterization data for compounds 8

2-(p-Tolyl)benzo[*d*]thiazole (8aa):^{S1} M. p. = 85–87 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.07 (d, J = 8.2 Hz, 1H, Ar–H), 7.99 (d, J = 8.2 Hz, 2H, Ar–H), 7.89 (d, J = 8.2 Hz, 1H, Ar–H), 7.49 (vt, J = 8.1 Hz, 1H, Ar–H), 7.37 (vt, J = 7.9 Hz, 1H, Ar–H), 7.30 (d, J = 8.2 Hz, 2H, Ar–H), 2.43 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): δ = 168.5 (C_q), 154.2 (C_q), 141.7 (C_q), 135.0 (C_q), 131.0 (C_q), 129.9 (2C, CH), 127.7 (2C, CH), 126.5 (CH), 125.2 (CH), 123.2 (CH), 121.8 (CH), 21.7 (CH₃). IR (neat): v_{max}/cm^{-1} 2961, 2918, 2851, 1478, 1428, 1257, 1224, 1084, 1013, 958, 793. HR-MS (ESI) *m*/*z* calcd for C₁₄H₁₁NS+H⁺ [M+H⁺] 226.0690, found 226.0685.

2-Phenylbenzo[*d*]thiazole (8ab):^{S1} The representative procedure was followed, using 6a (0.068 g, 0.5 mmol) and iodobenzene 7b (0.153 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 25/1) yielded 8ab (0.099 g, 94%) as a white solid. M. p. = 117–118 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.13-8.08 (m, 3H, Ar–H), 7.91 (d, *J* = 7.8 Hz, 1H, Ar–H), 7.53-7.48 (m, 4H, Ar–H), 7.39 (dvt, *J* = 8.0, 1.0 Hz, 1H, Ar–H). ¹³C-NMR (100 MHz, CDCl₃): δ = 168.3 (C_q), 154.2 (C_q), 135.2 (C_q), 133.7 (C_q), 131.2 (CH), 129.2 (2C, CH), 127.7 (2C, CH), 126.5 (CH), 125.4 (CH), 123.4 (CH), 121.8 (CH). IR (neat): v_{max}/cm⁻¹ 2922, 2850, 1472, 1426, 1218, 956, 756, 680. HR-MS (ESI) *m*/*z* calcd for C₁₃H₁₀NS+H⁺ [M+H⁺] 212.0534, found 212.0527.

2-(4-Methoxyphenyl)benzo[*d*]thiazole (8ac):^{S1} The representative procedure was followed, using 6a (0.067 g, 0.5 mmol) and 4-iodoanisole 7c (0.176 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $20/1 \rightarrow 10/1$) yielded 8ac (0.103 g,

86%) as a white solid. M. p. = 125–126 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.04-8.01 (m, 3H, Ar–H), 7.87 (d, *J* = 7.8 Hz, 1H, Ar–H), 7.47 (dvt, *J* = 7.1, 1.4 Hz, 1H, Ar–H), 7.35 (dvt, *J* = 7.8, 1.4 Hz, 1H, Ar–H), 6.99 (d, *J* = 8.7 Hz, 2H, Ar–H), 3.87 (s, 3H, OCH₃). ¹³C-NMR (100 MHz, CDCl₃): δ = 168.0 (C_q), 162.1 (C_q), 154.4 (C_q), 135.0 (C_q), 129.3 (2C, CH), 126.6 (C_q), 126.4 (CH), 124.9 (CH), 122.9 (CH), 121.7 (CH), 114.5 (2C, CH), 55.6 (CH₃). IR (neat): v_{max}/cm⁻¹ 2996, 2936, 2836, 1591, 1521, 1466, 1412, 1286. HR-MS (ESI) *m*/*z* calcd for C₁₄H₁₁NOS+H⁺ [M+H⁺] 242.0640, found 242.0636.

2-(4-Chlorophenyl)benzo[*d*]**thiazole** (**8ad**):^{S2} The representative procedure was followed, using **6a** (0.065 g, 0.481 mmol) and 1-chloro-4-iodobenzene **7d** (0.18 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $30/1 \rightarrow 20/1$) yielded **8ad** (0.109 g, 92%) as a white solid. M. p. = 118–119 °C. ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.07$ (d, J = 7.7 Hz, 1H, Ar–H), 8.02 (d, J = 8.7 Hz, 2H, Ar–H), 7.90 (d, J = 7.3 Hz, 1H, Ar–H), 7.50 (dvt, J = 7.2, 1.4 Hz, 1H, Ar–H), 7.46 (d, J = 8.2 Hz, 2H, Ar–H), 7.40 (dvt, J = 7.6, 1.4 Hz, 1H, Ar–H), ¹³C-NMR (100 MHz, CDCl₃): $\delta = 166.8$ (C_q), 154.2 (C_q), 137.2 (C_q), 135.2 (C_q), 132.3 (C_q), 129.4 (2C, CH), 128.9 (2C, CH), 126.7 (CH), 125.6 (CH), 123.5 (CH), 121.8 (CH). IR (neat): v_{max}/cm⁻¹ 2960, 2922, 2849, 1469, 1429, 1256, 1081, 1012, 797, 755. HR-MS (ESI) *m*/*z* calcd for C₁₃H₈CINS+H⁺ [M+H⁺] 246.0144, found 246.0141.

2-(4-Fluorophenyl)benzo[*d*]**thiazole** (**8ae**):^{S2} The representative procedure was followed, using **6a** (0.072 g, 0.533 mmol) and 1-fluoro-4-iodobenzene **7e** (0.167 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $30/1 \rightarrow 25/1$) yielded **8ae** (0.090 g, 74%) as a white solid. M. p. = 102-103 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 8.10-8.05 (m, 3H, Ar–H), 7.90 (d, *J* = 7.8 Hz, 1H, Ar–H), 7.50 (vt, *J* = 7.3 Hz, 1H, Ar–H), 7.39 (vt, *J* = 7.7 Hz, 1H, Ar–H), 7.19 (vt, *J* = 8.5 Hz, 2H, Ar–H). ¹³C-NMR (125 MHz, CDCl₃): δ = 166.9 (C_q), 164.6 (d, ¹*J*_{C–F} = 251.8 Hz, C_q), 154.3 (C_q), 135.2 (C_q), 130.1 (d, ⁴*J*_{C–F} = 2.9 Hz, C_q), 129.7

(d, ${}^{3}J_{C-F} = 8.6$ Hz, 2C, CH), 126.6 (CH), 125.4 (CH), 123.4 (CH), 121.8 (CH), 116.3 (d, ${}^{2}J_{C-F} = 21.9$ Hz, 2C, CH). 19 F-NMR (377 MHz, CDCl₃): $\delta = -108.8$ (s). IR (neat): $v_{max}/cm^{-1} 3055$, 2924, 2853, 1605, 1483, 1435, 1233, 969, 837, 756. HR-MS (ESI) m/z calcd for C₁₃H₈FNS+H⁺ [M+H⁺] 230.0440, found 230.0434.

2-(4-(Trifluoromethyl)phenyl)benzo[*d*]**thiazole** (**8af**):^{S1} The representative procedure was followed, using **6a** (0.065 g, 0.481 mmol) and 1-iodo-4-(trifluoromethyl)benzene **7f** (0.20 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 30/1 → 25/1) yielded **8af** (0.078 g, 58%) as a white solid. M. p. = 157–158 °C. ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.20$ (d, J = 8.1 Hz, 2H, Ar–H), 8.11 (d, J = 8.1 Hz, 1H, Ar–H), 7.93 (d, J = 8.1 Hz, 1H, Ar–H), 7.75 (d, J = 8.3 Hz, 2H, Ar–H), 7.53 (dvt, J = 8.0, 1.2 Hz, 1H, Ar–H), 7.43 (dvt, J = 8.1, 1.0 Hz, 1H, Ar–H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 166.2$ (C_q), 154.2 (C_q), 136.9 (C_q), 135.4 (C_q), 132.7 (q, ² $_{J_{C-F}} = 32.4$ Hz, C_q), 127.9 (2C, CH), 126.9 (CH), 126.2 (q, ³ $_{J_{C-F}} = 3.8$ Hz, 2C, CH), 125.9 (CH), 124.0 (q, ¹ $_{J_{C-F}} = 272.8$ Hz, CF₃), 123.8 (CH), 121.9 (CH). ¹⁹F-NMR (377 MHz, CDCl₃): $\delta = -62.9$ (s). IR (neat): v_{max} /cm⁻¹ 3058, 2995, 2917, 1594, 1485, 1408, 1231. HR-MS (ESI) *m*/*z* calcd for C₁₄H₈F₃NS+H⁺ [M+H⁺] 280.0408, found 280.0415.

1-(4-(Benzo[*d*]**thiazol-2-yl)phenyl)ethan-1-one** (**8ag**): The representative procedure was followed, using **6a** (0.071 g, 0.525 mmol) and 4-iodoacetophenone **7g** (0.184 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $10/1 \rightarrow 5/1$) yielded **8ag** (0.026 g, 20%) as a white solid. M. p. = 185–186 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.20 (d, *J* = 8.6 Hz, 2H, Ar–H), 8.12 (d, *J* = 8.3 Hz, 1H, Ar–H), 8.08 (d, *J* = 8.6 Hz, 2H, Ar–H), 7.94 (d, *J* = 7.8 Hz, 1H, Ar–H), 7.53 (dvt, *J* = 8.3, 1.2 Hz, 1H, Ar–H), 7.43 (dvt, *J* = 7.8, 0.7 Hz, 1H, Ar–H), 2.66 (s, 3H, COCH₃). ¹³C-NMR (100 MHz, CDCl₃): δ = 197.6 (C_q), 166.7 (C_q), 154.2 (C_q), 138.8 (C_q), 137.6 (C_q), 135.4 (C_q), 129.2 (2C, CH), 127.9 (2C, CH), 126.9 (CH), 126.0 (CH), 123.8 (CH), 121.9 (CH), 27.0 (CH₃). IR (neat): v_{max}/cm⁻¹ 2923, 2852, 1676, 1554, 1260,

1106, 964, 823, 763. HR-MS (ESI) m/z calcd for C₁₅H₁₁NOS+H⁺ [M+H⁺] 254.0640, found 254.0643.

2-(*m***-Tolyl)benzo[***d***]thiazole (8ah): The representative procedure was followed, using 6a (0.072 g, 0.533 mmol) and 3-iodotoluene 7h (0.164 g, 0.75 mmol). Purification by column chromatography on silica gel (***n***-hexane/EtOAc: 30/1 \rightarrow 25/1) yielded 8ah (0.113 g, 94%) as a white solid. M. p. = 76–78 °C. ¹H-NMR (400 MHz, CDCl₃): \delta = 8.09 (d, J = 7.8 Hz, 1H, Ar–H), 7.95 (s, 1H, Ar–H), 7.91-7.86 (m, 2H, Ar–H), 7.50 (vt, J = 7.3 Hz, 1H, Ar–H), 7.38 (vt, J = 7.5 Hz, 2H, Ar–H), 7.30 (d, J = 7.6 Hz, 1H, Ar–H), 2.46 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): \delta = 168.5 (C_q), 154.3 (C_q), 139.0 (C_q), 135.2 (C_q), 133.7 (C_q), 132.0 (CH), 129.1 (CH), 128.2 (CH), 126.5 (CH), 125.3 (CH), 125.0 (CH), 123.3 (CH), 121.8 (CH), 21.5 (CH₃). IR (neat): v_{max}/cm^{-1} 3056, 2923, 2854, 1610, 1503, 1433, 1290, 887, 791. HR-MS (ESI)** *m***/z calcd for C₁₄H₁₁NS+H⁺ [M+H⁺] 226.0690, found 226.0686.**

2-(3-Bromophenyl)benzo[*d*]**thiazole (8ai):** The representative procedure was followed, using **6a** (0.063 g, 0.466 mmol) and 3-bromo-4-iodobenzene **7i** (0.212 g, 0.75 mmol) and reaction was heated for 24 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $30/1 \rightarrow 20/1$) yielded **8ai** (0.055 g, 41%) as a light yellow solid. M. p. = 91–93 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.28 (t, *J* = 1.7 Hz, 1H, Ar–H), 8.09 (d, *J* = 8.1 Hz, 1H, Ar–H), 7.99 (d, *J* = 7.8 Hz, 1H, Ar–H), 7.91 (d, *J* = 7.8 Hz, 1H, Ar–H), 7.61 (dd, *J* = 8.1, 1.0 Hz, 1H, Ar–H), 7.51 (dvt, *J* = 8.3, 1.2 Hz, 1H, Ar–H), 7.41 (dvt, *J* = 8.1, 1.0 Hz, 1H, Ar–H), 7.36 (t, *J* = 7.8 Hz, 1H, Ar–H). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.3 (C_q), 154.1 (C_q), 135.6 (C_q), 135.3 (C_q), 134.0 (CH), 130.7 (CH), 130.4 (CH), 126.7 (CH), 126.3 (CH), 125.8 (CH), 123.6 (CH), 123.4 (C_q), 121.9 (CH). IR (neat): v_{max} /cm⁻¹ 2959, 2922, 2851, 1458, 1421, 1216, 970, 788, 749. HR-MS (ESI) *m/z* calcd for C₁₃H₉BrNS+H⁺ [M+H⁺] 289.9639, found 289.9644; [M+2+H⁺] 291.9619, found 291.9625.

2-(*o***-Tolyl)benzo[***d***]thiazole (8aj): The representative procedure was followed, using 6a (0.067 g, 0.50 mmol) and 2-iodotoluene 7j (0.164 g, 0.75 mmol). Purification by column chromatography on silica gel (***n***-hexane/EtOAc: 30/1 \rightarrow 25/1) yielded 8aj (0.107 g, 95%) as white solid. M. p. = 58–59 °C. ¹H-NMR (400 MHz, CDCl₃): \delta = 8.12 (d,** *J* **= 8.2 Hz, 1H, Ar–H), 7.94 (d,** *J* **= 7.8 Hz, 1H, Ar–H), 7.77 (d,** *J* **= 7.8 Hz, 1H, Ar–H), 7.52 (dvt,** *J* **= 7.8, 1.4 Hz, 1H, Ar–H), 7.44-7.30 (m, 4H), 2.67 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): \delta = 168.2 (C_q), 153.9 (C_q), 137.4 (C_q), 135.7 (C_q), 133.2 (C_q), 131.7 (CH), 130.7 (CH), 130.2 (CH), 126.3 (CH), 126.2 (CH), 125.3 (CH), 123.5 (CH), 121.5 (CH), 21.5 (CH₃). IR (neat): v_{max}/cm⁻¹ 2923, 2859, 1476, 1452, 1428, 1238, 1041, 951, 756. HR-MS (ESI)** *m***/***z* **calcd for C₁₄H₁₁NS+H⁺ [M+H⁺] 226.0690, found 226.0687.**

2-(3,5-Dimethylphenyl)benzo[*d*]**thiazole (8ak):** The representative procedure was followed, using **6a** (0.070 g, 0.518 mmol) and 1-iodo-3,5-dimethylbenzene **7k** (0.174 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $30/1 \rightarrow 25/1$) yielded **8ak** (0.123 g, 99%) as white solid. M. p. = 76–77 °C. ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.09$ (d, J = 8.0 Hz, 1H, Ar–H), 7.90 (d, J = 7.9 Hz, 1H, Ar–H), 7.73 (s, 2H, Ar–H), 7.49 (vt, J = 7.6 Hz, 1H, Ar–H), 7.38 (vt, J = 7.6 Hz, 1H, Ar–H), 7.14 (s, 1H, Ar–H), 2.42 (s, 6H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 168.8$ (C_q), 154.2 (C_q), 138.9 (2C, C_q), 135.1 (C_q), 133.5 (C_q), 133.0 (CH), 126.4 (CH), 125.5 (2C, CH), 125.3 (CH), 123.3 (CH), 121.8 (CH), 21.4 (2C, CH₃). IR (neat): v_{max}/cm^{-1} 3055, 2915, 2854, 1599, 1432, 1310, 1163, 842, 772. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₃NS+H⁺ [M+H⁺] 240.0847, found 240.0843.

2-(Pyridin-3-yl)benzo[*d*]**thiazole** (**8a**):^{S1} The representative procedure was followed, using **6a** (0.069 g, 0.510 mmol) and 3-iodopyridine **7l** (0.154 g, 0.75 mmol) and reaction was heated for 24 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc/Et₃N: $5/1/0.5 \rightarrow 3/1/0.5$) yielded **8al** (0.076 g, 70%) as white solid. M. p. = 131–133 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 9.31 (br s, 1H, Ar–H), 8.73 (br s, 1H, Ar–H), 8.41 (d, *J* = 7.8 Hz, 1H, Ar–H), 8.11 (d, *J* = 8.3 Hz, 1H, Ar–H), 7.94 (d, *J* = 7.8 Hz, 1H, Ar–H), 7.54 (vt, *J* = 7.7 Hz, 1H, Ar–H), 7.48-7.43 (m, 2H, Ar–H). ¹³C-NMR (100 MHz, CDCl₃): δ = 164.5 (C_q), 154.0 (C_q), 151.5 (CH), 148.5 (CH), 135.0 (C_q), 134.7 (CH), 129.8 (C_q), 126.7 (CH), 125.8 (CH), 123.9 (CH), 123.5 (CH), 121.8 (CH). IR (neat): v_{max}/cm⁻¹ 2959, 2922, 2851, 1419, 1259, 1091, 1015, 954, 802. HR-MS (ESI) *m/z* calcd for C₁₂H₈N₂S+H⁺ [M+H⁺] 213.0486, found 213.0491.

2-(Pyrazin-2-yl)benzo[*d*]**thiazole (8am):** The representative procedure was followed, using **6a** (0.063 g, 0.466 mmol) and 2-iodopyrazine **7m** (0.154 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc/Et₃N: 5/1/0.5 → 3/1/0.5) yielded **8am** (0.047 g, 47%) as white solid. M. p. = 183–184 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 9.61 (s, 1H, Ar–H), 8.66 (d, *J* = 9.8 Hz, 2H, Ar–H), 8.14 (d, *J* = 8.1 Hz, 1H, Ar–H), 7.98 (d, *J* = 8.1 Hz, 1H, Ar–H), 7.54 (vt, *J* = 7.6 Hz, 1H, Ar–H), 7.46 (vt, *J* = 7.6 Hz, 1H, Ar–H). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.6 (C_q), 154.4 (C_q), 147.2 (C_q), 146.0 (CH), 144.3 (CH), 142.6 (CH), 136.2 (C_q), 126.8 (CH), 126.4 (CH), 124.2 (CH), 122.2 (CH). IR (neat): v_{max}/cm⁻¹ 2957, 2921, 2850, 1501, 1392, 1259, 1010, 970, 758. HR-MS (ESI) *m*/*z* calcd for C₁₁H₇N₃S+H⁺ [M+H⁺] 214.0439, found 214.0440.

2-(p-Tolyl)benzo[d]oxazole (8ba): The representative procedure was followed, using 6b (0.063 g, 0.528 mmol) and 4-iodotoluene 7a (0.164 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 40/1) yielded 8ba (0.094 g, 85%) as a white

solid. M. p. = 115–116 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.15 (d, *J* = 8.2 Hz, 2H, Ar–H), 7.79-7.75 (m, 1H, Ar–H), 7.59-7.55 (m, 1H, Ar–H), 7.37-7.32 (m, 4H, Ar–H), 2.44 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): δ = 163.5 (C_q), 150.8 (C_q), 142.3 (C_q), 142.2 (C_q), 129.8 (2C, CH), 127.8 (2C, CH), 125.1 (CH), 124.7 (CH), 124.5 (C_q), 120.0 (CH), 110.7 (CH), 21.8 (CH₃). IR (neat): v_{max}/cm^{-1} 3058, 2923, 2856, 1548, 1445, 1240, 1047, 806, 687. HR-MS (ESI) *m/z* calcd for C₁₄H₁₁NO+H⁺ [M+H⁺] 210.0919, found 210.0913.

5-Methyl-2-(p-tolyl)benzo[*d*]**oxazole (8ca):** The representative procedure was followed, using **6c** (0.066 g, 0.50 mmol) and 4-iodotoluene **7a** (0.164 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $50/1 \rightarrow 30/1$) yielded **8ca** (0.102 g, 91%) as a white solid. M. p. = 139–140 °C. ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.13$ (d, J = 8.1 Hz, 2H, Ar–H), 7.54 (s, 1H, Ar–H), 7.43 (d, J = 8.2 Hz, 1H, Ar–H), 7.32 (d, J = 8.1 Hz, 2H, Ar–H), 7.14 (d, J = 8.2 Hz, 1H, Ar–H), 2.48 (s, 3H, CH₃), 2.43 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 163.6$ (C_q), 149.1 (C_q), 142.5 (C_q), 142.1 (C_q), 134.4 (C_q), 129.8 (2C, CH), 127.7 (2C, CH), 126.1 (CH), 124.7 (C_q), 119.9 (CH), 110.0 (CH), 21.8 (CH₃), 21.7 (CH₃). IR (neat): v_{max}/cm^{-1} 3031, 2922, 2863, 1564, 1489, 1264, 1185, 1053, 801. HR-MS (ESI) *m/z* calcd for C₁₅H₁₃NO+H⁺ [M+H⁺] 224.1075, found 224.1071.

2.2. Characterization data for compounds 10

MeO

2-(3,5-Dimethylphenyl)-5-(4-methoxyphenyl)oxazole (10ak): The representative procedure was followed, using 9a (0.088 g, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene 7k (0.174 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $10/1 \rightarrow 5/1$) yielded 10ak (0.110 g, 79%) as a white solid. M. p. = 80–82 °C. ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.72$ (s, 2H, Ar–H), 7.66 (d, J = 8.5 Hz, 2H, Ar–H), 7.31 (s, 1H, Ar–H), 7.08

(s, 1H, Ar–H), 6.97 (d, J = 8.5 Hz, 2H, Ar–H), 3.85 (s, 3H, OCH₃), 2.39 (s, 6H, CH₃). ¹³C-NMR (125 MHz, CDCl₃): $\delta = 161.1$ (C_q), 159.9 (C_q), 151.3 (C_q), 138.6 (2C, C_q), 132.1 (CH), 127.5 (C_q), 125.9 (2C, CH), 124.1 (2C, CH), 121.9 (CH), 121.1 (C_q), 114.6 (2C, CH), 55.5 (OCH₃), 21.4 (2C, CH₃). IR (neat): v_{max} /cm⁻¹ 2958, 2916, 2836, 1607, 1497, 1457, 1244, 1176, 1026, 813, 728. HR-MS (ESI) *m*/*z* calcd for C₁₈H₁₇NO₂+H⁺ [M+H⁺] 280.1338, found 280.1329.

5-(4-Chlorophenyl)-2-(3,5-dimethylphenyl)oxazole (**10bk**): The representative procedure was followed, using **9b** (0.090 g, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene **7k** (0.174 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1 → 10/1) yielded **10bk** (0.125 g, 88%) as a white solid. M. p. = 129–131 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 7.72 (s, 2H, Ar–H), 7.65 (d, *J* = 8.7 Hz, 2H, Ar–H), 7.43-4.40 (m, 3H, Ar–H), 7.10 (s, 1H, Ar–H), 2.40 (s, 6H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): δ = 161.9 (C_q), 150.2 (C_q), 138.7 (2C, C_q), 134.2 (C_q), 132.5 (CH), 129.3 (2C, CH), 127.1 (C_q), 126.7 (C_q), 125.5 (2C, CH), 124.3 (2C, CH), 123.9 (CH), 21.4 (2C, CH₃). IR (neat): v_{max}/cm⁻¹ 2959, 2915, 2851, 1531, 1478, 1259, 1085, 1011, 816, 728. HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₄CINO+H⁺ [M+H⁺] 284.0842, found 284.0837.

2-(*p*-Tolyl)-5-(4-(trifluoromethyl)phenyl)oxazole (10ca): The representative procedure was followed, using 9c (0.106 g, 0.50 mmol) and 4-iodo toluene 7a (0.164 g, 0.75 mmol) and the reaction was continued for 24 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $10/1 \rightarrow 5/1$) yielded 10ca (0.135 g, 89%) as a white solid. M. p. = 157-158 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.01 (d, *J* = 7.8 Hz, 2H, Ar–H), 7.80 (d, *J* = 8.1 Hz, 2H, Ar–H), 7.68 (d, *J* = 8.3 Hz, 2H, Ar–H), 7.53 (s, 1H, Ar–H), 7.30 (d, *J* = 7.8 Hz, 2H, Ar–H), 2.42

(s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 149.7$ (C_q), 141.4 (2C, C_q), 131.5 (C_q), 130.1 (q, ²*J*_{C-F} = 33.1 Hz, C_q), 129.8 (2C, CH), 126.6 (2C, CH), 126.1 (q, ³*J*_{C-F} = 3.9 Hz, 2C, CH), 125.3 (CH), 124.5 (C_q), 124.3 (2C, CH), 124.1 (q, ¹*J*_{C-F} = 272.0 Hz, CF₃), 21.8 (CH₃). ¹⁹F-NMR (377 MHz, CDCl₃): $\delta = -62.7$ (s). IR (neat): v_{max}/cm^{-1} 3047, 2925, 2862, 1613, 1489, 1326, 1121, 834, 730. HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₂F₃NO+H⁺ [M+H⁺] 304.0949, found 304.0943.

2-(3,5-Dimethylphenyl)-5-(naphthalen-2-yl)oxazole (10dk): The representative procedure was followed, using **9d** (0.098 g, 0.502 mmol) and 1-iodo-3,5-dimethylbenzene **7k** (0.174 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $20/1 \rightarrow 10/1$) yielded **10dk** (0.106 g, 71%) as a white solid. M. p. = 134–136 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.21 (s, 1H, Ar–H), 7.93-7.89 (m, 2H, Ar–H), 7.86-7.84 (m, 1H, Ar–H), 7.79-7.77 (m, 3H, Ar–H), 7.55-7.48 (m, 3H, Ar–H), 7.12 (s, 1H, Ar–H), 2.43 (s, 6H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): δ = 161.9 (C_q), 151.4 (C_q), 138.7 (2C, C_q), 133.6 (C_q), 133.2 (C_q), 132.4 (CH), 128.9 (CH), 128.4 (CH), 128.0 (CH), 127.3 (C_q), 127.0 (CH), 126.7 (CH), 125.5 (C_q), 124.3 (2C, CH), 124.0 (CH), 123.0 (CH), 122.3 (CH), 21.5 (2C, CH₃). IR (neat): v_{max}/cm⁻¹ 2920, 2851, 1561, 1532, 1501, 1261, 1096, 1044, 812, 740. HR-MS (ESI) *m/z* calcd for C₂₁H₁₇NO+H⁺ [M+H⁺] 300.1388, found 300.1383.

5-(Pyridine-3-yl)-2-(*p***-tolyl)oxazole (10ea):** The representative procedure was followed, using **9e** (0.073 g, 0.5 mmol) and 4-iodo toluene **7a** (0.164 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc/Et₃N: $5/1/0.05 \rightarrow 2/1/0.05 \rightarrow 1/1/0.05)$ yielded **10ea** (0.102 g, 86%) as a white solid. M. p. = 81–83 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.99 (s, 1H, Ar–H), 8.57 (s, 1H, Ar–H), 8.00-7.96 (m, 3H, Ar–H), 7.51 (s, 1H, Ar–H), 7.39-7.28 (m, 3H, Ar–H), 2.41 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃): δ = 162.4 (C_q), 149.2

(CH), 148.2 (C_q), 145.6 (CH), 141.3 (C_q), 131.3 (CH), 129.8 (2C, CH), 126.6 (2C, CH), 124.8 (CH), 124.6 (C_q), 124.5 (C_q), 123.9 (CH), 21.7 (CH₃). IR (neat): v_{max}/cm^{-1} 2920, 2854, 1493, 1423, 1327, 1136, 1020, 951, 823, 730. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂N₂O+H⁺ [M+H⁺] 237.1028, found 237.1024.

5-(Pyridine-3-yl)-2-(4-(trifluoromethyl)phenyl)oxazole (10ef): The representative procedure was followed, using **9e** (0.074 g, 0.506 mmol) and 1-iodo-4-(trifluoromethyl)benzene **7f** (0.20 g, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc/Et₃N: 5/1/0.05 \rightarrow 2/1/0.05 \rightarrow 1/1/0.05) yielded **10ef** (0.115 g, 78%) as a white solid. M. p. = 128–129 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 9.01 (s, 1H, Ar–H), 8.61 (s, 1H, Ar–H), 8.22 (d, *J* = 8.2 Hz, 2H, Ar–H), 8.01 (d, *J* = 7.6 Hz, 1H, Ar–H), 7.75 (d, *J* = 7.9 Hz, 2H, Ar–H), 7.58 (s, 1H, Ar–H), 7.42-7.40 (m, 1H, Ar–H). ¹³C-NMR (125 MHz, CDCl₃): δ = 160.7 (C_q), 149.7 (CH), 149.4 (C_q), 145.8 (CH), 132.5 (q, ²*J*_{C-F} = 32.4 Hz, C_q), 131.7 (CH), 130.3 (C_q), 126.8 (2C, CH), 126.1 (q, ³*J*_{C-F} = 3.8 Hz, 2C, CH), 125.3 (CH), 124.2 (C_q), 124.0 (CH), 123.9 (q, ¹*J*_{C-F} = 272.8 Hz, CF₃). ¹⁹F-NMR (377 MHz, CDCl₃): δ = -62.9 (s). IR (neat): v_{max}/cm⁻¹ 3061, 2924, 1563, 1482, 1413, 1328, 1119, 862, 701. HR-MS (ESI) *m*/z calcd for C₁₅H₉F₃N₂O+H⁺ [M+H⁺] 291.0745, found 291.0739.

3. X-ray structure determinations

X-ray intensity data measurements of compounds 2a and 2b were carried out on a Bruker SMART APEX II CCD diffractometer with graphite-monochromatized (MoK_a= 0.71073 Å) radiation at 297 (2) K and 90(2) K, respectively. The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from three sets of 12 frames (total 36 frames). Data were collected with ω scan width of 0.5° at eight different settings of φ and 2θ with a frame time of 10 sec keeping the sample-to-detector distance fixed at 5.00 cm for both compounds. The X-ray data collection was monitored by APEX2 program (Bruker, 2006).^{S3} All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2006). SHELX-97 was used for structure solution and full matrix least-squares refinement on $F^{2,S4}$ Hydrogen atoms were placed in geometrically idealized position and constrained to ride on their parent atoms. For compound **2b**, two methyl groups (C15, C16 and C20, C21) of each tert-butyl groups showed large anisotropic displacement parameters (ADP) due to orientational disorder. The two orientations of equal (0.5) occupancies were separated using PART 1 and PART 2 instructions, the C-C bond lengths were restrained using DFIX 1.54 (0.02) instruction to achieve an approximate theoretical geometry. The anisotropic displacement parameters were kept within reasonable limits using DELU (0.01), SIMU (0.04) and ISOR (0.1) instructions in the SHELXL full-matrix least-squares refinement. Crystal data for the structures have been deposited in the Cambridge Crystallographic Data Center with numbers (compound numbers) CCDC-973533 (2a), CCDC-973534 (2b).

4. Structural data for 2a

4.1. Table S2. Crystal data and structure refinement for 2a.

Identification code	(^{iPr2} POCN ^{iPr2})PdCl	
Empirical formula	C ₁₉ H ₃₃ ClNOPPd	
Formula weight	464.28	
Temperature	297(2) K	
Wavelength	71.073 pm	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 821.82(2) pm	$\alpha = 90^{\circ}$
	b = 1298.77(3) pm	$\beta = 90^{\circ}$
	c = 2023.91(5) pm	$\gamma=90^\circ$
Volume	2.16023(9) nm ³	
Z	4	
Density (calculated)	1.428 Mg/m ³	
Absorption coefficient	1.063 mm ⁻¹	
F(000)	960	
Crystal size	$0.24 \text{ x} 0.19 \text{ x} 0.15 \text{ mm}^3$	
Theta range for data collection	1.86 to 30.00°.	
Index ranges	-11<=h<=9, -14<=k<=18, -28<	=l<=26
Reflections collected	13795	
Independent reflections	6257 [R(int) = 0.0263]	
Completeness to theta = 30.00°	99.6 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.8569 and 0.7845	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6257 / 0 / 225	
Goodness-of-fit on F ²	1.010	
Final R indices [I>2sigma(I)]	R1 = 0.0260, wR2 = 0.0601	
R indices (all data)	R1 = 0.0303, $wR2 = 0.0623$	
Absolute structure parameter	0.01(2)	
Largest diff. peak and hole	0.495 and -0.270 e.Å ⁻³	

4.2. Table S3. Bond lengths [pm] and angles [°] for 2a.

Pd(1)-C(1)	195.6(2)	C(12)-H(12B)	96.00
Pd(1)-P(1)	218.90(6)	C(12)-H(12C)	96.00
Pd(1)-N(1)	222.04(17)	C(8)-C(10)	151.1(5)
Pd(1)-Cl(1)	239.22(6)	C(8)-C(9)	151.9(4)
P(1)-O(1)	164.70(18)	C(8)-H(8)	98.00
P(1)-C(14)	180.3(3)	C(10)-H(10A)	96.00
P(1)-C(17)	181.2(2)	C(10)-H(10B)	96.00
O(1)-C(2)	138.6(3)	C(10)-H(10C)	96.00
C(11)-C(13)	151.7(4)	C(9)-H(9A)	96.00
C(11)-N(1)	152.3(3)	C(9)-H(9B)	96.00
C(11)-C(12)	154.4(4)	C(9)-H(9C)	96.00
C(11)-H(11)	98.00	C(14)-C(15)	151.4(5)
C(2)-C(3)	138.0(4)	C(14)-C(16)	151.8(5)
C(2)-C(1)	138.9(3)	C(14)-H(14)	98.00
C(3)-C(4)	138.8(5)	C(15)-H(15A)	96.00
C(3)-H(3)	93.00	C(15)-H(15B)	96.00
C(4)-C(5)	136.2(4)	C(15)-H(15C)	96.00
C(4)-H(4)	93.00	C(16)-H(16A)	96.00
C(5)-C(6)	139.6(4)	C(16)-H(16B)	96.00
C(5)-H(5)	93.00	C(16)-H(16C)	96.00
C(6)-C(1)	138.1(3)	C(17)-C(19)	151.1(4)
C(6)-C(7)	150.0(4)	C(17)-C(18)	152.7(3)
C(7)-N(1)	151.4(3)	C(17)-H(17)	98.00
C(7)-H(7A)	97.00	C(19)-H(19C)	96.00
C(7)-H(7B)	97.00	C(19)-H(19A)	96.00
N(1)-C(8)	151.8(4)	C(19)-H(19B)	96.00
C(13)-H(13A)	96.00	C(18)-H(18A)	96.00
C(13)-H(13B)	96.00	C(18)-H(18C)	96.00
C(13)-H(13C)	96.00	C(18)-H(18B)	96.00
C(12)-H(12A)	96.00		

C(1)-Pd(1)-P(1)	80.35(7)	C(6)-C(7)-H(7A)	109.2
C(1)-Pd(1)-N(1)	81.84(8)	N(1)-C(7)-H(7A)	109.2
P(1)-Pd(1)-N(1)	162.10(5)	C(6)-C(7)-H(7B)	109.2
C(1)-Pd(1)-Cl(1)	177.32(7)	N(1)-C(7)-H(7B)	109.2
P(1)-Pd(1)-Cl(1)	97.04(2)	H(7A)-C(7)-H(7B)	107.9
N(1)-Pd(1)-Cl(1)	100.79(5)	C(7)-N(1)-C(8)	107.8(2)
O(1)-P(1)-C(14)	101.40(13)	C(7)-N(1)-C(11)	110.01(19)
O(1)-P(1)-C(17)	102.47(11)	C(8)-N(1)-C(11)	111.4(2)
C(14)-P(1)-C(17)	109.34(15)	C(7)-N(1)-Pd(1)	106.63(14)
O(1)-P(1)-Pd(1)	106.99(7)	C(8)-N(1)-Pd(1)	112.24(15)
C(14)-P(1)-Pd(1)	118.50(10)	C(11)-N(1)-Pd(1)	108.68(14)
C(17)-P(1)-Pd(1)	115.78(8)	C(11)-C(13)-H(13A)	109.5
C(2)-O(1)-P(1)	112.56(14)	C(11)-C(13)-H(13B)	109.5
C(13)-C(11)-N(1)	111.3(2)	H(13A)-C(13)-H(13B)	109.5
C(13)-C(11)-C(12)	111.5(3)	C(11)-C(13)-H(13C)	109.5
N(1)-C(11)-C(12)	113.5(3)	H(13A)-C(13)-H(13C)	109.5
C(13)-C(11)-H(11)	106.7	H(13B)-C(13)-H(13C)	109.5
N(1)-C(11)-H(11)	106.7	C(11)-C(12)-H(12A)	109.5
C(12)-C(11)-H(11)	106.7	C(11)-C(12)-H(12B)	109.5
C(3)-C(2)-O(1)	121.0(2)	H(12A)-C(12)-H(12B)	109.5
C(3)-C(2)-C(1)	121.2(3)	C(11)-C(12)-H(12C)	109.5
O(1)-C(2)-C(1)	117.7(2)	H(12A)-C(12)-H(12C)	109.5
C(2)-C(3)-C(4)	118.0(3)	H(12B)-C(12)-H(12C)	109.5
C(2)-C(3)-H(3)	121.0	C(10)-C(8)-N(1)	112.6(3)
C(4)-C(3)-H(3)	121.0	C(10)-C(8)-C(9)	108.8(3)
C(5)-C(4)-C(3)	121.5(2)	N(1)-C(8)-C(9)	111.5(2)
C(5)-C(4)-H(4)	119.2	C(10)-C(8)-H(8)	107.9
C(3)-C(4)-H(4)	119.2	N(1)-C(8)-H(8)	107.9
C(4)-C(5)-C(6)	120.4(3)	C(9)-C(8)-H(8)	107.9
C(4)-C(5)-H(5)	119.8	C(8)-C(10)-H(10A)	109.5
C(6)-C(5)-H(5)	119.8	C(8)-C(10)-H(10B)	109.5
C(1)-C(6)-C(5)	118.9(2)	H(10A)-C(10)-H(10B)	109.5
C(1)-C(6)-C(7)	117.5(2)	C(8)-C(10)-H(10C)	109.5
C(5)-C(6)-C(7)	123.6(2)	H(10A)-C(10)-H(10C)	109.5
C(6)-C(7)-N(1)	112.06(19)	H(10B)-C(10)-H(10C)	109.5
C(8)-C(9)-H(9A)	109.5	H(16A)-C(16)-H(16B)	109.5

C(8)-C(9)-H(9B)	109.5	C(14)-C(16)-H(16C)	109.5
H(9A)-C(9)-H(9B)	109.5	H(16A)-C(16)-H(16C)	109.5
C(8)-C(9)-H(9C)	109.5	H(16B)-C(16)-H(16C)	109.5
H(9A)-C(9)-H(9C)	109.5	C(19)-C(17)-C(18)	111.6(3)
H(9B)-C(9)-H(9C)	109.5	C(19)-C(17)-P(1)	107.86(19)
C(6)-C(1)-C(2)	119.9(2)	C(18)-C(17)-P(1)	113.8(2)
C(6)-C(1)-Pd(1)	118.17(17)	C(19)-C(17)-H(17)	107.8
C(2)-C(1)-Pd(1)	121.86(18)	C(18)-C(17)-H(17)	107.8
C(15)-C(14)-C(16)	112.1(3)	P(1)-C(17)-H(17)	107.8
C(15)-C(14)-P(1)	109.8(3)	C(17)-C(19)-H(19C)	109.5
C(16)-C(14)-P(1)	112.0(2)	C(17)-C(19)-H(19A)	109.5
C(15)-C(14)-H(14)	107.6	H(19C)-C(19)-H(19A)	109.5
C(16)-C(14)-H(14)	107.6	C(17)-C(19)-H(19B)	109.5
P(1)-C(14)-H(14)	107.6	H(19C)-C(19)-H(19B)	109.5
C(14)-C(15)-H(15A)	109.5	H(19A)-C(19)-H(19B)	109.5
C(14)-C(15)-H(15B)	109.5	C(17)-C(18)-H(18A)	109.5
H(15A)-C(15)-H(15B)	109.5	C(17)-C(18)-H(18C)	109.5
C(14)-C(15)-H(15C)	109.5	H(18A)-C(18)-H(18C)	109.5
H(15A)-C(15)-H(15C)	109.5	C(17)-C(18)-H(18B)	109.5
H(15B)-C(15)-H(15C)	109.5	H(18A)-C(18)-H(18B)	109.5
C(14)-C(16)-H(16A)	109.5	H(18C)-C(18)-H(18B)	109.5
C(14)-C(16)-H(16B)	109.5		

Symmetry transformations used to generate equivalent atoms:

5. Structural data for 2b

5.1. Table S4. Crystal data and structure refinement for 2b.

Identification code	(^{tBu2} POCN ^{iPr2})PdCl	
Empirical formula	C ₂₁ H ₃₇ ClNOPPd	
Formula weight	492.34	
Temperature	90(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 1340.29(16) pm	$\alpha = 90^{\circ}$
	b = 811.83(10) pm	$\beta = 103.850(8)^{\circ}$
	c = 2122.1(3) pm	$\gamma=90^\circ$
Volume	2.2419(5) nm ³	
Z	4	
Density (calculated)	1.459 Mg/m ³	
Absorption coefficient	1.029 mm ⁻¹	
F(000)	1024	
Crystal size	0.35 x 0.22 x 0.15 mm ³	
Theta range for data collection	1.98 to 27.00°.	
Index ranges	-17<=h<=16, -10<=k<=10, -27	7<=l<=27
Reflections collected	21147	
Independent reflections	4822 [R(int) = 0.0837]	
Completeness to theta = 27.00°	98.6 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.8610 and 0.7148	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	4822 / 92 / 285	
Goodness-of-fit on F ²	1.040	
Final R indices [I>2sigma(I)]	R1 = 0.0465, wR2 = 0.0989	
R indices (all data)	R1 = 0.0672, wR2 = 0.1079	
Largest diff. peak and hole	0.834 and -1.624 e.Å ⁻³	

5.2. Table S5. Bond lengths [pm] and angles [°] for 2b.

Pd(1)-C(1)	195.8(4)	C(11)-C(12)	152.5(6)
Pd(1)-P(1)	220.90(11)	C(11)-H(11)	100.00
Pd(1)-N(1)	222.9(3)	C(12)-H(12A)	98.00
Pd(1)-Cl(1)	239.43(11)	C(12)-H(12B)	98.00
P(1)-O(1)	165.3(3)	C(12)-H(12C)	98.00
P(1)-C(14)	183.6(5)	C(13)-H(13A)	98.00
P(1)-C(18)	184.4(5)	C(13)-H(13B)	98.00
O(1)-C(2)	138.8(5)	C(13)-H(13C)	98.00
N(1)-C(7)	150.5(5)	C(14)-C(15)	143.4(10)
N(1)-C(8)	151.2(5)	C(14)-C(16)	149.5(10)
N(1)-C(11)	151.8(6)	C(14)-C(17)	149.7(7)
C(1)-C(6)	139.1(6)	C(14)-C(16')	164.4(9)
C(1)-C(2)	139.3(6)	C(14)-C(15')	166.1(10)
C(2)-C(3)	138.4(6)	C(15)-H(15A)	98.00
C(3)-C(4)	138.8(6)	C(15)-H(15B)	98.00
C(3)-H(3)	95.00	C(15)-H(15C)	98.00
C(4)-C(5)	138.1(6)	C(16)-H(16A)	98.00
C(4)-H(4)	95.00	C(16)-H(16B)	98.00
C(5)-C(6)	139.4(6)	C(16)-H(16C)	98.00
C(5)-H(5)	95.00	C(15')-H(15D)	98.00
C(6)-C(7)	150.3(6)	C(15')-H(15E)	98.00
C(7)-H(7A)	99.00	C(15')-H(15F)	98.00
C(7)-H(7B)	99.00	C(16')-H(16D)	98.00
C(8)-C(9)	152.2(7)	C(16')-H(16E)	98.00
C(8)-C(10)	152.8(6)	C(16')-H(16F)	98.00
C(8)-H(8)	100.00	C(17)-H(17A)	98.00
C(9)-H(9A)	98.00	C(17)-H(17B)	98.00
C(9)-H(9B)	98.00	C(17)-H(17C)	98.00
C(9)-H(9C)	98.00	C(18)-C(21')	141.2(10)
C(10)-H(10A)	98.00	C(18)-C(20)	146.6(10)
C(10)-H(10B)	98.00	C(18)-C(19)	148.6(7)
C(10)-H(10C)	98.00	C(18)-C(20')	170.4(10)
C(11)-C(13)	151.2(6)	C(18)-C(21)	171.7(10)
C(19)-H(19A)	98.00	C(21)-H(21C)	98.00

C(19)-H(19B)	98.00	C(20')-H(20D)	98.00
C(19)-H(19C)	98.00	C(20')-H(20E)	98.00
C(20)-H(20A)	98.00	C(20')-H(20F)	98.00
C(20)-H(20B)	98.00	C(21')-H(21D)	98.00
C(20)-H(20C)	98.00	C(21')-H(21E)	98.00
C(21)-H(21A)	98.00	C(21')-H(21F)	98.00
C(21)-H(21B)	98.00		
C(1)-Pd(1)-P(1)	80.56(12)	C(2)-C(3)-H(3)	121.0
C(1)-Pd(1)-N(1)	81.35(15)	C(4)-C(3)-H(3)	121.0
P(1)-Pd(1)-N(1)	161.65(9)	C(5)-C(4)-C(3)	121.5(4)
C(1)-Pd(1)-Cl(1)	177.93(13)	C(5)-C(4)-H(4)	119.3
P(1)-Pd(1)-Cl(1)	99.18(4)	C(3)-C(4)-H(4)	119.3
N(1)-Pd(1)-Cl(1)	99.00(9)	C(4)-C(5)-C(6)	119.7(4)
O(1)-P(1)-C(14)	100.75(19)	C(4)-C(5)-H(5)	120.2
O(1)-P(1)-C(18)	102.5(2)	C(6)-C(5)-H(5)	120.2
C(14)-P(1)-C(18)	112.9(2)	C(1)-C(6)-C(5)	120.0(4)
O(1)-P(1)-Pd(1)	105.95(11)	C(1)-C(6)-C(7)	116.9(4)
C(14)-P(1)-Pd(1)	115.86(16)	C(5)-C(6)-C(7)	123.0(4)
C(18)-P(1)-Pd(1)	116.31(18)	C(6)-C(7)-N(1)	112.0(3)
C(2)-O(1)-P(1)	114.1(3)	C(6)-C(7)-H(7A)	109.2
C(7)-N(1)-C(8)	111.0(3)	N(1)-C(7)-H(7A)	109.2
C(7)-N(1)-C(11)	107.6(3)	C(6)-C(7)-H(7B)	109.2
C(8)-N(1)-C(11)	111.8(3)	N(1)-C(7)-H(7B)	109.2
C(7)-N(1)-Pd(1)	107.1(2)	H(7A)-C(7)-H(7B)	107.9
C(8)-N(1)-Pd(1)	108.4(2)	N(1)-C(8)-C(9)	111.4(4)
C(11)-N(1)-Pd(1)	110.9(2)	N(1)-C(8)-C(10)	113.9(4)
C(6)-C(1)-C(2)	118.9(4)	C(9)-C(8)-C(10)	109.8(4)
C(6)-C(1)-Pd(1)	118.5(3)	N(1)-C(8)-H(8)	107.1
C(2)-C(1)-Pd(1)	122.6(3)	C(9)-C(8)-H(8)	107.1
C(3)-C(2)-O(1)	121.4(4)	C(10)-C(8)-H(8)	107.1
C(3)-C(2)-C(1)	121.9(4)	C(8)-C(9)-H(9A)	109.5
O(1)-C(2)-C(1)	116.7(4)	C(8)-C(9)-H(9B)	109.5
C(2)-C(3)-C(4)	118.0(4)	H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5	C(15)-C(14)-P(1)	110.5(5)
H(9A)-C(9)-H(9C)	109.5	C(16)-C(14)-P(1)	115.7(5)

H(9B)-C(9)-H(9C)	109.5	C(17)-C(14)-P(1)	115.2(4)
C(8)-C(10)-H(10A)	109.5	C(16')-C(14)-P(1)	103.3(4)
C(8)-C(10)-H(10B)	109.5	C(15')-C(14)-P(1)	99.3(4)
H(10A)-C(10)-H(10B)	109.5	C(14)-C(15)-H(15A)	109.5
C(8)-C(10)-H(10C)	109.5	C(14)-C(15)-H(15B)	109.5
H(10A)-C(10)-H(10C)	109.5	C(14)-C(15)-H(15C)	109.5
H(10B)-C(10)-H(10C)	109.5	C(14)-C(16)-H(16A)	109.5
C(13)-C(11)-N(1)	111.5(4)	C(14)-C(16)-H(16B)	109.5
C(13)-C(11)-C(12)	110.0(4)	C(14)-C(16)-H(16C)	109.5
N(1)-C(11)-C(12)	112.7(3)	C(14)-C(15')-H(15D)	109.5
C(13)-C(11)-H(11)	107.5	C(14)-C(15')-H(15E)	109.5
N(1)-C(11)-H(11)	107.5	H(15D)-C(15')-H(15E)	109.5
C(12)-C(11)-H(11)	107.5	C(14)-C(15')-H(15F)	109.5
C(11)-C(12)-H(12A)	109.5	H(15D)-C(15')-H(15F)	109.5
C(11)-C(12)-H(12B)	109.5	H(15E)-C(15')-H(15F)	109.5
H(12A)-C(12)-H(12B)	109.5	C(14)-C(16')-H(16D)	109.5
C(11)-C(12)-H(12C)	109.5	C(14)-C(16')-H(16E)	109.5
H(12A)-C(12)-H(12C)	109.5	H(16D)-C(16')-H(16E)	109.5
H(12B)-C(12)-H(12C)	109.5	C(14)-C(16')-H(16F)	109.5
C(11)-C(13)-H(13A)	109.5	H(16D)-C(16')-H(16F)	109.5
C(11)-C(13)-H(13B)	109.5	H(16E)-C(16')-H(16F)	109.5
H(13A)-C(13)-H(13B)	109.5	C(14)-C(17)-H(17A)	109.5
C(11)-C(13)-H(13C)	109.5	C(14)-C(17)-H(17B)	109.5
H(13A)-C(13)-H(13C)	109.5	H(17A)-C(17)-H(17B)	109.5
H(13B)-C(13)-H(13C)	109.5	C(14)-C(17)-H(17C)	109.5
C(15)-C(14)-C(16)	62.9(6)	H(17A)-C(17)-H(17C)	109.5
C(15)-C(14)-C(17)	119.6(6)	H(17B)-C(17)-H(17C)	109.5
C(16)-C(14)-C(17)	122.2(5)	C(21')-C(18)-C(20)	58.9(6)
C(15)-C(14)-C(16')	107.4(6)	C(21')-C(18)-C(19)	118.7(6)
C(17)-C(14)-C(16')	98.3(5)	C(20)-C(18)-C(19)	125.0(7)
C(16)-C(14)-C(15')	101.7(7)	C(21')-C(18)-C(20')	104.8(7)
C(17)-C(14)-C(15')	95.3(5)	C(19)-C(18)-C(20')	93.9(6)
C(16')-C(14)-C(15')	145.4(6)	C(20)-C(18)-C(21)	100.4(7)
C(19)-C(18)-C(21)	100.0(5)	C(18)-C(21)-H(21A)	109.5
C(20')-C(18)-C(21)	146.2(7)	C(18)-C(21)-H(21B)	109.5
C(21')-C(18)-P(1)	117.4(6)	C(18)-C(21)-H(21C)	109.5

C(20)-C(18)-P(1)	108.8(5)	C(18)-C(20')-H(20D)	109.5
C(19)-C(18)-P(1)	116.0(4)	C(18)-C(20')-H(20E)	109.5
C(20')-C(18)-P(1)	99.3(4)	H(20D)-C(20')-H(20E)	109.5
C(21)-C(18)-P(1)	101.8(5)	C(18)-C(20')-H(20F)	109.5
C(18)-C(19)-H(19A)	109.5	H(20D)-C(20')-H(20F)	109.5
C(18)-C(19)-H(19B)	109.5	H(20E)-C(20')-H(20F)	109.5
H(19A)-C(19)-H(19B)	109.5	C(18)-C(21')-H(21D)	109.5
C(18)-C(19)-H(19C)	109.5	C(18)-C(21')-H(21E)	109.5
H(19A)-C(19)-H(19C)	109.5	H(21D)-C(21')-H(21E)	109.5
H(19B)-C(19)-H(19C)	109.5	C(18)-C(21')-H(21F)	109.5
C(18)-C(20)-H(20A)	109.5	H(21D)-C(21')-H(21F)	109.5
C(18)-C(20)-H(20B)	109.5	H(21E)-C(21')-H(21F)	109.5
C(18)-C(20)-H(20C)	109.5		

Symmetry transformations used to generate equivalent atoms:

6. References

- (S1) J. Huang, J. Chan, Y. Chen, C. J. Borths, K. D. Baucom, R. D. Larsen and M. M. Faul, J. Am. Chem. Soc., 2010, 132, 3674-3675.
- (S2) J. Canivet, J. Yamaguchi, I. Ban and K. Itami, Org. Lett., 2009, 11, 1733-1736.
- (S3) APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA 2006.
- (S4) G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.

S32

- 8. ³¹P NMR spectra of (^{iPr2}POCN^{iPr2})Pd-species during resting state study.
 - 8.1. ³¹P NMR spectra of (^{iPr2}POCN^{iPr2})Pd-species in presence of CuI during catalysis.

220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 Chemical Shift (ppm)

8.2. ³¹P NMR spectra of (^{iPr2}POCN^{iPr2})Pd-species in presence of CuOAc during catalysis.

9. ¹H and ¹³C NMR spectra of compounds 8

10. ¹H and ¹³C NMR spectra of compounds 10

