Supporting Information

Fig. S1 The optimized ground-state geometric structures for complexes **1a–9a** at the B3LYP/6-31G(d)-LANL2DZ level of theory.

Fig. S2 Simulated absorption spectra of complexes 1-9 in dichloromethane solution at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory together with experimental values in parentheses.

Fig. S3 Pictorial representation of the frontier moleculer orbital energy levels of complexes 1–9.

Fig. S4 Simulated and experimental absorption spectra of complexes 1a-9a in dichloromethane solution determined at the TD-CAM-B3LYP/6-31G(d)-LANL2DZ level of theory.

Fig. S5 Single electron transitions for the emissions of T_2 states of complexes 1a-9a determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory.

Fig. S6 Single electron transitions for the emissions of T_2 states of complexes 1–9 determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory.

Fig. S7 Simulated absorption spectra of the two designed complexes A and B in dichloromethane solution at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory.

	1	1				3		4		5
	\mathbf{S}_{0}	T ₁	S ₀	T ₁	S_0	T_1	S_0	T_1		T_1
			E	Bond Length	n/Å					
Pt-C(1)	2.120	2.129	2.118(2.097)	2.113	2.119	2.115	2.121	2.111	2.122	2.116
Pt–N	2.014	2.003	2.014(2.015)	1.988	2.012	1.990	2.016	1.990	2.016	1.992
Pt-C(2)	2.082	2.081	2.083(2.055)	2.042	2.083	2.053	2.083	2.041	2.082	2.051
Pt-S	2.290	2.295	2.288(2.188)	2.309	2.291	2.302	2.285	2.308	2.289	2.303
			В	ond Angle/	deg					
C(1)– Pt – C	(2) 160.8	160.1	160.9(161.1)	161.7	160.9	161.6	160.8	161.8	160.8	161.6
N-Pt-S	179.2	179.1	179.1(172.2)	179.9	179.1	179.6	179.1	179.7	179.1	179.5
	6		7		_	8		9		
	\mathbf{S}_{0}	T_1	\mathbf{S}_{0}	T_1	S_0	T_1	S_0	T_1		
			E	Bond Length	n/Å					
Pt-C(1)	2.123(2.091)	2.071	2.122	2.073	2.079	2.037	2.108	2.095		
Pt–N	2.020(2.012)	1.996	2.021	1.998	2.022	1.998	2.029	1.999		
Pt-C(2)	2.073(2.068)	2.067	2.072	2.071	2.104	2.102	2.069	2.025		
Pt–S	2.283(2.187)	2.296	2.302	2.300	2.286	2.297	2.282	2.296		
			В	ond Angle/	deg					
C(1)– Pt – C	(2) 160.3(160.4)	161.5	160.2	161.2	160.5	161.6	159.9	161.0		
N-Pt-S	179.5(176.1)	179.7	179.6	179.5	177.4	178.0	178.9	179.2		

Table S1 Geometric parameters of the Pt(II) complexes 1-9 in the S₀ and T₁ states as determined at the B3LYP/6-31G(d)-LANL2DZ level of theory along with experimental values from X-ray diffraction^a

Species	State	$\lambda_{cal}(nm)$	f	Main configuration	Assignment	$\lambda_{Expt.}(nm)$
	S_1	439	0.0009	HOMO→LUMO(92%)	$d(Pt)+\pi(ph+naph)\rightarrow\pi^*(py+ph+naph)/ILCT$	417
	S_2	386	0.1839	H-1→LUMO(82%)	$\pi(py+ph+naph) \rightarrow \pi^*(py+ph+naph)/ILCT$	393
1	S_4	363	0.1600	HOMO→L+1(88%)	$d(Pt)+\pi(ph+naph)\rightarrow\pi^*(py+ph+naph)/IL/MLCT$	359
1	S_6	330	0.1140	H-1→L+1(70%)	$\pi(py+ph+naph) \rightarrow \pi^*(py+ph+naph)/ILCT$	325
	S_{10}	301	0.5924	H-6→LUMO(84%)	$\pi(py+ph+naph) \rightarrow \pi^*(py+ph+naph)/ILCT$	288
	S_{15}	283	0.5181	HOMO→L+2(47%)	$d(Pt)+\pi(ph+naph)\rightarrow\pi^*(py+ph+naph)/IL/MLCT$	272
	S_1	495	0.0135	HOMO→LUMO(94%)	$d(Pt)+\pi(carb)\rightarrow\pi^{*}(ph+py)/IL/MLCT$	463
	S_3	411	0.3642	H-1→LUMO(74%)	$\pi(py+carb) \rightarrow \pi^*(ph+py)/ILCT$	408
2	S_{11}	331	0.3387	HOMO→L+2(87%)	$d(Pt)+\pi(carb)\rightarrow\pi^*(naph+carb)/IL/MLCT$	337
	S ₁₆	303	0.6576	HOMO→L+3(56%)	$d(Pt)+\pi(carb)\rightarrow\pi^{*}(ph+naph)/IL/MLCT$	300
	S ₃₁	261	0.3000	HOMO→L+7(37%)	$d(Pt)+\pi(carb)\rightarrow\pi^*(naph+carb)/IL/MLCT$	
	S_1	460	0.0457	HOMO→LUMO(95%)	$d(Pt)+\pi(py+naph+fluo)\rightarrow\pi^*(ph+py)/IL/MLCT$	458
	S_2	398	0.3856	H-1→LUMO(94%)	$\pi(naph+fluo) \rightarrow \pi^*(ph+py)/ILCT$	401
3	S_5	352	0.0796	H-2→LUMO(89%)	$\pi(naph+fluo) \rightarrow \pi^*(ph+py)/ILCT$	376
	S_{11}	312	0.8452	HOMO→L+2(79%)	$d(Pt)+\pi(py+naph+fluo)\rightarrow\pi^*(naph+fluo)/IL/MLCT$	306
	S ₂₃	272	0.2718	H-1→L+3(48%)	$\pi(naph+fluo) \rightarrow \pi^*(ph+naph)/ILCT$	282

Table S2 Selected absorptions for complexes 1-3 in dichloromethane solution determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory together with experimental values^a

Species	State	λ _{cal} (nm)	f	Main configuration	Assignment	λ _{Expt.} (nm)
	S_1	498	0.0032	HOMO→LUMO(95%)	$d(Pt)+p(N)+\pi(carb)\rightarrow\pi^{*}(py)/IL/MLCT$	476
	S ₃	405	0.4294	H-1→LUMO(44%)	$p(N)+\pi(carb)\rightarrow\pi^*(py)/ILCT$	416
4	S_8	350	0.1135	H-2→L+1(85%)	π (py+carb) $\rightarrow \pi^*$ (py+carb)/ILCT	345
4	S_{10}	333	0.5060	H-3→L+1(92%)	$\pi(\text{carb}) \rightarrow \pi^*(\text{py+carb})/\text{ILCT}$	345
	S ₁₂	319	0.6672	HOMO→L+2(90%)	$d(Pt)+p(N)+\pi(carb)\rightarrow\pi^*(py+carb)/IL/MLCT$	323
	S ₁₉	281	0.4912	HOMO→L+5(45%)	$d(Pt)+p(N)+\pi(carb)\rightarrow\pi^*(py+carb)/IL/MLCT$	275
	S_1	482	0.0101	HOMO→LUMO(94%)	$d(Pt)+p(N)+\pi(fluo+carb)\rightarrow\pi^*(py)/IL/MLCT$	467
	S_2	408	0.4023	H-1→LUMO(79%)	$p(N)+\pi(py+fluo+carb)\rightarrow\pi^*(py)/ILCT$	415
E	S_5	361	0.0947	H-2→LUMO(87%)	$p(N)+\pi(fluo+carb)\rightarrow\pi^*(py)/ILCT$	386
5	S_9	333	0.7014	H-2→L+1(95%)	$p(N)+\pi(fluo+carb)\rightarrow\pi^*(py+fluo+carb)/ILCT$	331
	S_{11}	311	0.3310	HOMO→L+2(58%)	$d(Pt)+p(N)+\pi(fluo+carb)\rightarrow\pi^*(fluo+carb)/IL/MLCT$	
	S ₁₉	276	0.2900	HOMO→L+3(57%)	$d(Pt)+p(N)+\pi(fluo+carb)\rightarrow\pi^*(fluo)/IL/MLCT$	272

Table S3 Selected absorptions for complexes 4–5 in dichloromethane solution determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory together with experimental values^a

Species	State	$\lambda_{cal}(nm)$	f	Main configuration	Assignment	$\lambda_{\text{Expt.}}(\mathbf{nm})$
	S_1	516	0.0003	HOMO→LUMO(92%)	$d(Pt)+p(N)+\pi(carb)\rightarrow\pi^*(ph+py+thio)/IL/MLCT$	487
	S_2	423	0.2276	H-1→LUMO(87%)	$p(N)+\pi(py+carb+thio)\rightarrow\pi^*(ph+py+thio)/ILCT$	421
6	S_3	395	0.1443	$HOMO \rightarrow L+1(86\%)$	$d(Pt)+p(N)+\pi(carb) \rightarrow \pi^{*}(py+carb+thio)/IL/MLCT$	378
0	S_6	345	0.2815	H-1→L+1(94%)	$p(N)+\pi(py+carb+thio)\rightarrow\pi^*(py+carb+thio)/ILCT$	
	S ₁₃	307	0.6184	H-6→LUMO(80%)	$d(Pt)+\pi(ph+py)\rightarrow\pi^*(ph+py+thio)/IL/MLCT$	300
	S_{17}	281	0.1970	H-4→L+1(60%)	$d(Pt)+\pi(carb+thio)\rightarrow\pi^*(py+carb+thio)/IL/MLCT$	278
	S_1	496	0.0390	HOMO→LUMO(97%)	$d(Pt)+\pi(py+fluo+thio)\rightarrow\pi^*(py)/IL/MLCT$	440/515
	S_3	361	0.4361	HOMO→L+1(82%)	$d(Pt)+\pi(py+fluo+thio)\rightarrow\pi^*(py+fluo+thio)/IL/MLCT$	362
7	S_7	322	0.4683	H-1→L+1(84%)	π (fluo+thio) $\rightarrow \pi^*$ (py+fluo+thio)/ILCT	317
1	S_8	310	0.4722	H-5→LUMO(70%)	$\pi(\text{ph+py+fluo+thio}) \rightarrow \pi^*(\text{py})/\text{ILCT}$	307
	S_{17}	278	0.2206	HOMO→L+4(82%)	$d(Pt)+\pi(py+fluo+thio)\rightarrow\pi^*(fluo)/IL/MLCT$	
	S ₂₂	265	0.2527	H-7→L+1(35%)	$d(Pt)+\pi(fluo+thio)\rightarrow\pi^*(py+fluo+thio)/IL/MLCT$	
	S_1	467	0.0145	HOMO→LUMO(98%)	$d(Pt)+\pi(py+naph+thio)\rightarrow\pi^*(py+thio)/IL/MLCT$	458
	S_2	391	0.1835	H-1→LUMO(89%)	$\pi^{*}(naph) \rightarrow \pi^{*}(py+thio)/ILCT$	402
Q	S_3	372	0.2024	HOMO→L+1(84%)	$d(Pt)+\pi(py+naph+thio)\rightarrow\pi^*(py+naph+thio)/IL/MLCT$	365
o	S_{10}	305	0.6224	H-6→LUMO(68%)	$d(Pt)+\pi(ph+py+naph)\rightarrow\pi^*(py+thio)/IL/MLCT$	294
	S ₁₅	286	0.3754	HOMO→L+3(67%)	$d(Pt)+\pi(py+naph+thio)\rightarrow\pi^*(ph+thio)/IL/MLCT$	276
	S ₂₀	265	0.2203	H-1→L+3(43%)	$\pi^{*}(naph) \rightarrow \pi^{*}(ph+thio)/ILCT$	
	S_1	510	0.0163	HOMO→LUMO(99%)	$d(Pt) + \pi(py+thio) \rightarrow \pi^*(py)/IL/MLCT$	505
	S_2	356	0.0181	H-1→LUMO(80%)	$p(N)+\pi(thio)\rightarrow\pi^*(py)/ILCT$	354
9	S_5	339	0.1735	H-2→LUMO(93%)	$p(S)+d(Pt)+\pi(py+thio)\rightarrow\pi^*(py)/IL/MLCT$	332
	S_8	309	0.7272	H-5→LUMO(91%)	$\pi(ph+py) \rightarrow \pi^*(py)/ILCT$	301
	S_{11}	292	0.2484	H-1→L+1(73%)	$p(N)+\pi(thio)\rightarrow\pi^*(py+thio)/ILCT$	

Table S4 Selected absorptions for complexes 6-9 in dichloromethane solution determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory together with experimental values^a

Species	State	$\lambda_{cal}(nm)$	f	Main configuration	Assignment	$\lambda_{Expt.}(nm)$
1	T_4	419	0.0000	H-1→LUMO(54%)	$\pi(py+ph+naph) \rightarrow \pi^*(py+ph+naph)/ILCT$	417
2	T_2	483	0.0000	HOMO→LUMO(54%)	$d(Pt)+\pi(carb) \rightarrow \pi^*(ph+py)/IL/MLCT$	463
3	T ₃	454	0.0000	HOMO→L+1(46%)	d(Pt)+ π (py+naph+fluo) $\rightarrow \pi^*$ (py+naph)/IL/MLCT	458
4	T ₃	472	0.0000	H-2→LUMO(30%)	$\pi(py+carb) \rightarrow \pi^*(py)/ILCT$	476
5	T ₃	462	0.0000	H-1→LUMO(42%)	$p(N)+\pi(py+fluo+carb)\rightarrow\pi^*(py)/ILCT$	467
6	T ₃	474	0.0000	H-1→LUMO(58%)	$p(N)+\pi(py+carb+thio)\rightarrow\pi^*(ph+py+thio)/ILCT$	487
7	T_2	529	0.0000	HOMO→L+1(56%)	d(Pt)+ π (py+fluo+thio) $\rightarrow \pi^*$ (py+fluo+thio)/IL/MLCT	515
8	T_2	506	0.0000	HOMO→L+1(54%)	d(Pt)+ π (py+naph+thio) $\rightarrow \pi^*$ (py+naph+thio)/IL/MLCT	483
9	T ₂	536	0.0000	HOMO→L+1(63%)	$d(Pt) + \pi(py+thio) \rightarrow \pi^*(py+thio)/IL/MLCT$	540

 Table S5 Calculated vertical triplet absorption of complexes 1–9 in dichloromethane solution determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory together with experimental values^a

	1a	2a	3a	4 a	5 a
номо	::::::::::::::::::::::::::::::::::::::				
ΠΟΜΟ	6a	7a	8 a	9a	
	ون مین م	ంతం త్రత	686 636		
	8.000 C	49 0 C 0	<5000A		
	0,00 0,00 0,0	33 3	3,4,0 3,6	० ७ ७	
	1a	2a	3 a	4 a	5a
LUMO	6a	7a	8a	9a	
			::		

Table S6 Contour plots of the highest cooupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) of complexes **1a–9a**

	1	2	3	4	5
номо	ंदुः		jonger:		
HUMU	6	7	8	9	
			*** ***		
	1	2	3	4	5
LUMO					
LUMU	6	7	8	9	

Table S7 Contour plots of the highest cooupied molecular orbitals (HOMOs) andlowest unoccupied molecular orbitals (LUMOs) of complexes 1–9

Species	State	$\lambda_{cal}(nm)$	Main configuration	Assignment	$\lambda_{Expt}(nm)$
2	T_2	516	H-1→L+1(32%)	$\pi(\operatorname{carb+py+naph}) \rightarrow \pi^*(\operatorname{py+carb+naph})/\operatorname{ILCT}$	590
3	T_1	675	HOMO→LUMO(85%)	$d(Pt)+\pi(py+fluo)\rightarrow\pi^*(ph+py+fluo)/IL/MLCT$	669
	T_2	514	HOMO→L+1(29%)	$d(Pt)+\pi(py+fluo)\rightarrow\pi^*(py+fluo+naph)/IL/MLCT$	568
4	T_2	540	$HOMO \rightarrow L+1(50\%)$	$d(Pt)+p(N+C)+\pi(carb) \rightarrow \pi^*(py+carb)/IL/MLCT$	600
5	T_2	540	$HOMO \rightarrow L+1(50\%)$	$d(Pt)+p(N)+\pi(py+carb+fluo)\rightarrow\pi^*(py+carb)/IL/MLCT$	572
6	T_2	567	$HOMO \rightarrow L+1(39\%)$	$d(Pt)+p(N)+\pi(py+carb+thio)\rightarrow\pi^*(py+carb+thio)/IL/MLCT$	600
7	T_2	557	$HOMO \rightarrow L+1(52\%)$	d(Pt)+ π (py+fluo+thio) $\rightarrow \pi^*$ (py+fluo+thio)/IL/MLCT	593
8	T_2	518	$HOMO \rightarrow L+1(39\%)$	d(Pt)+ π (py+thio+naph) $\rightarrow \pi^*$ (py+thio+naph)/IL/MLCT	582
9	T ₂	578	HOMO→L+1(52%)	$d(Pt)+\pi(py+thio)\rightarrow\pi^*(py+thio)/IL/MLCT$	611

 Table S8 Phosphorescent emissions of complexes 2–9 in dichloromethane solution determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory together with the experimental values^a

Species	$M_{c}(\%)$	$k_{\rm r}/10^5 {\rm ~s}^{-1}$	$\Delta E(\mathrm{eV})$	Φ _{em} (Expt.)
2	3.01	0.69	2.40	0.05
3	8.49	1.84	2.41	0.09
4	8.08	1.76	2.30	0.06
5	8.78	1.90	2.30	0.02
6	9.36	2.00	2.18	0.15
7	9.57	2.04	2.23	0.12
8	9.30	1.99	2.40	0.13
9	10.41	2.19	2.14	0.11

Table S9 Calculated metallic character of phosphorescence (M_c , %), $k_r/10^5 \text{ s}^{-1}$, $\text{T}_2 \rightarrow \text{S}_0$ vertical transition energy (ΔE , eV) for complexes **2**–**9**, together with the experimental quantum efficiency (Φ_{em} , %)^a

Species	IP _v	IPa	HEP	SPE(h)	EA _v	EA _a	EEP	SPE(e)	λ_{hole}	$\lambda_{electron}$	Δ_{SPE}	Δλ
1	6.59	6.43	6.05	0.16	0.72	0.87	1.01	0.15	0.54	0.29	0.01	0.25
2	5.94	5.84	5.72	0.10	0.76	0.90	1.04	0.15	0.22	0.29	0.05	0.07
3	6.24	6.16	6.07	0.08	0.84	0.97	1.10	0.13	0.17	0.26	0.05	0.09
4	5.78	5.69	5.59	0.09	0.53	0.64	0.75	0.11	0.19	0.22	0.02	0.03
5	6.02	5.94	5.87	0.07	0.62	0.72	0.82	0.10	0.15	0.20	0.03	0.05
6	5.98	5.87	5.76	0.11	0.70	0.84	0.98	0.14	0.22	0.28	0.03	0.06
7	6.21	6.13	6.05	0.08	0.79	0.92	1.05	0.13	0.17	0.25	0.05	0.08
8	6.48	6.38	6.28	0.10	0.73	0.87	1.01	0.14	0.20	0.28	0.04	0.08
9	6.45	6.34	6.24	0.10	0.69	0.83	0.96	0.14	0.21	0.27	0.04	0.06

Table S10 Ionization potentials (IP, eV), electron affinities (EA, eV), extraction potentials (HEP and EEP, eV), stabilization energy (SPE, eV), and internal reorganization energies (λ , eV) for complexes 1–9 determined at the B3LYP/6-31G(d)-LANL2DZ level of theory