Electronic Supplementary Information

for

Copper(I)- and copper(0)-promoted homocoupling and homocoupling-hydrodehalogenation reactions of dihalogenoclathrochelate precursors for C-C conjugated iron(II) bis-cage complexes

Oleg A. Varzatskii,^{*a*} Sergey V. Shul'ga,^{*a*} Alexander S. Belov,^{*b*} Valentin V. Novikov,^{*b*} Alexander V. Dolganov,^{*b*} Anna V. Vologzhanina,^{*b*} Yan Z. Voloshin ^{*b*}

^a Vernadskii Institute of General and Inorganic Chemistry NASU, 03680 Kiev, Ukraine ^b Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia, fax: +7-499-135-50-85, e-mail: <u>voloshin@ineos.ac.ru</u>

Figure S1. Fragment of C–Br...O bonded layers in the crystal of polymorph I of the complex $FeBd_2(Br_2Gm)(BF)_2 \cdot CH_2Cl_2$. Hydrogen atoms are omitted for clarity.

Figure S2. The selected $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectra of bis-clathrochelates with different conformational lability.

Figure S3. ⁵⁷Fe Mössbauer spectrum of {FeBd₂(BrGm)(BF)₂}₂

Figure S4. ⁵⁷Fe Mössbauer spectrum of {FeBd₂(IGm)(BF)₂}₂

Figure S5. MALDI-TOF mass spectrum of {FeBd₂(BrGm)(BF)₂}₂

Figure S6. MALDI-TOF mass spectrum of {FeBd₂(NH₂Gm)(BF)₂}₂

	FeBd ₂ (Br ₂ Gm)	$(BF)_2 \cdot CH_2Cl_2$	$\{FeBd_2(HGm)(BF)_2\}_2 \cdot \qquad \{FeBd_2(IGm)(BF)_2\}_2 \cdot$		${FeBd_2(BrGm)(BF)_2}_2$.	${FeBd_2((CH_2)_5Gm)(BF)_2}_2$		
	polymorph I (this work)	polymorph II [2]	$\cdot 3C_6H_6$	$\cdot 6C_6H_5Cl$	· 3 C ₆ H ₆ [2]	$\cdot 5 C_6 H_6 [2]$		
Empirical formula	$C_{31}H_{22}B_2Br_2Cl_2F_2FeN_6O_6$	$C_{31}H_{22}B_2Br_2F_2FeN_6O_6Cl_2$	$C_{78}H_{60}B_4F_4Fe_2N_{12}O_{12}\\$	$C_{96}H_{70}B_4Cl_6F_4Fe_2I_2N_{12}O_{12}\\$	$C_{78}H_{58}B_4Br_2F_4Fe_2N_{12}O_{12}$	$C_{100}H_{90}B_4F_4Fe_2N_{14}O_{12}$		
Formula weight	920.74	920.74	1588.32	2281.08	1746.12	1910.80		
Color, habit	Red, prism	Red, prism	Red, plate	Red-Violet, prism	Red, needle	Red, needle		
Crystal size (mm)	$0.50\times0.35\times0.30$	$0.32 \times 0.15 \times 0.13$	$0.24 \times 0.19 \times 0.06$	0.48× 0.32 0.21	$0.22 \times 0.10 \times 0.08$	$0.28\times0.06\times0.05$		
<i>a</i> (Å)	10.552 (2)	13.913 (2)	16.233 (3)	33.569 (4)	28.3891 (12)	12.040 (7)		
<i>b</i> (Å)	22.452 (4)	17.521 (2)	14.490 (2)	17.048 (2)	28.3891 (12)	19.399 (12)		
<i>c</i> (Å)	15.059 (3)	16.0443 (17)	33.279 (6)	23.737 (3)	18.8932 (17)	23.44 (2)		
β (°)	93.750 (4)	96.463 (4)	100.199 (3)	128.290 (3)	90	96.646 (13)		
$V(Å^3)$	3359.9 (11)	3886.1 (9)	7704 (2)	10662 (2)	15226.8 (16)	4891 (6)		
Ζ	4	4	4	4	8	2		
Crystal system	Monoclinic	monoclinic	Monoclinic	Monoclinic	tetragonal	triclinic		
Space group	$P2_{1}/n$	P2 ₁ /n	C 2/c	C 2/c	14 ₁ /a	P1		
D_{cal} (g cm ⁻³)	1.718	1.574	1.369	1.421	1.523	1.299		
μ (mm ⁻¹)	2.882	2.64	0.455	1.070	1.51	0.37		
Reflections collected	37639	57472	35481	67324	82003	41467		
Independent reflections (R _{int})	8976 (0.081)	9354 (0.030)	7560 (0.068)	10433 (0.032)	8696 (0.145)	17181 (0.141)		
Obs.refl./restraints/ parameters	4914 / 0 / 469	7867 / 4 / 468	5552 / 0 / 426	8069 / 0 / 560	4872 / 0 / 454	4953 / 543 / 914		
$R,^{a}$ % $[F^{2} > 2\sigma(F^{2})]$	0.048	0.067	0.089	0.080	0.048	0.119		
$R_{w}^{b} \% (F^{2})$	0.106	0.195	0.223	0.228	0.103	0.289		
GOF	1.00	1.00	1.01	0.99	1.00	1.02		
Largest diff. peak and hole (e $Å^{-3}$)	1.05 and -0.50	2.71 and – 1.64	0.90 and -0.74	2.48 and -1.70	1.05 and – 1.11	1.30 and – 1.25		
F(000)	1824	1824	3264	4568	7072	1984		

Table S1. Crystallographic data and experimental details for the C–C conjugated iron(II) *bis*-clathrochelates and two polymorphs of their dibromomonoclathrochelate precursor

 ${}^{a}R = \Sigma \mid |F_{o}| - |F_{c}| \mid /\Sigma \mid F_{o}| \cdot {}^{b}R_{w} = [\Sigma(w(F_{o}^{2} - F_{c}^{2})^{2})/\Sigma(w(F_{o}^{2}))]^{1/2} \cdot \text{GOF} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/(N_{\text{obs}} - N_{\text{param}})]^{1/2}$

Type of A/Z interaction	^a Polymorph I ^b	Polymorph II b	$>1 \phi_{A/Z} c$
	(this work)	[2]	
Fe/B	2	2	0
F/O	12	12	0
O/H	4	4	0
O/C	15	17	2
O/O	6	6	0
O/N	6	6	0
O/Br	2	2	0
N/H	6	4	2
N/C	9	10	1
N/N	11	11	0
N/B	6	6	0
C/C	40	39	1
C/H	70	69	1
C/Br	2	2	0
H/H	20	19	1
Br/Br	1	1	0
Sum	212	210	8

Table S2. Intermolecular interactions in two polymorphs of the complex $FeBd_2(Br_2Gm)(BF)_2 \cdot CH_2Cl_2$

^a The interacting pairs are denoted as A/Z

^b A number of their intramolecular interactions of such A/Z type

 $c > 1 \phi_{A/Z}$ is a module of the difference between the corresponding numbers for polymorphs 1 and II.

The full details of such procedure a comparison of the conformation polymorphs are described in [7].

Compound	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}
$FeBd_2(Br_2Gm)(BF)_2$ [2]	264(28)	285(6.2)	299(10)	329(3.4)	386(3.5)	440(3.4)	470(30)			
${FeBd_2BrGm(BF)_2}_2$ [2]	239(33)	263(21)	282(18)	301(12)	388(7.0)	435(9.8)	461(18)	509(25)		
$FeBd_2(I_2Gm)(BF)_2$ [5]	253(38)		281(23)	310(6.8)	345(3.8)	414(4.5)	447(9.8)	475(23)	503(9.4)	
${FeBd_2IGm(BF)_2}_2$	262(44)		283(18)	298(19)	368(7.9)	428(9.7)	462(26)	495(23)	516(7.5)	
$FeBd_2(Cl_2Gm)(BF)_2$ [9]	264(14)		285(7.7)	311(3.6)	399(3.2)	448(3.5)	470(19)			
FeBd ₂ (ClGmI)(BF) ₂ [17]	247(23)	271(11)	285(7.7)	303(6.5)	377(3.2)	436(4.5)	461(8.8)	479(18)		
${FeBd_2ClGm(BF)_2}_2$	262(45)		283(20)	304(17)	390(8.7)	445(13)	465(26)	519(25)		
FeBd ₂ Gm(BF) ₂ [S1]	265(1.6)	271(17)	282(1.2)	331(3.6)		460(6.0)	465(17)			
${FeBd_2HGm(BF)_2}_2$	262(19)		279(27)	305(14)	346(6.0)	415(6.9)	465(26)	529(15)	567(24)	
${FeBd_2(((CH_2)_5N)Gm)(BF)_2}_2 [2]$	253(41)	266(4.3)	288(31)	310(10)	399(7.0)	477(12)	489(21)	545(18)		
FeBd ₂ ((meta-HOOCC ₆ H ₄ S) ₂ Gm)(BF) ₂ [1]	246(27)	278(14)	299(6.1)		399(3.3)	455(6.4)	476(12)	509(10)		
${FeBd_2(meta-HOOCC_6H_4SGm)(BF)_2}_2 [1]$	245(42)	270(28)	296(21)		358(6.8)	442(14)	465(17)	519(11)	526(16)	
FeBd ₂ ((para-HOOCC ₆ H ₄ S) ₂ Gm)(BF) ₂ [1]	265(17)		288(7.6)	306(6.7)	403(2.9)	450(4.0)	475(7.8)	508(8.3)		
${FeBd_2(para-HOOCC_6H_4SGm)(BF)_2}_2[2]$	238(12)	269(35)	302(10)	362(4.7)		416(4.6)	458(15)	512(13)	530(5.8)	
FeBd ₂ ((NH ₂) ₂ Gm)(BF) ₂ [1]	248(17)	266(7.9)	291(13)	338(3.1)	374(2.9)	425(5.3)	475(5.8)	511(12)	576(1.0)	
${FeBd_2(NH_2Gm)(BF)_2}_2 [2]$	264(27)	285(10)	296(18)	323(9.0)	382(6.4)	442(8.7)	478(20)	508(14)	568(18)	598(5.8)
{FeBd ₂ (CH ₃ O(CH ₂) ₂ NHGm)(BF) ₂ } ₂ [2]	251(28)	276(34)	292(8.4)		357(9.1)	427(9.0)	474(140)	500(22)	555(12)	645(4.1)

Table S3. Maxima of the UV-vis spectra (λ_{max}/nm , $\epsilon \cdot 10^{-3} \text{ mol}^{-1} \cdot L \cdot cm^3$) of the dihalogenomacrobicyclic precursors, the bisclathrochelate derivatives and their monoclathrochelate analogs in the range 230–900 nm

Supplementary Information references

S1. O.A. Varzatskii, I.N. Denisenko, A.S. Belov, A.V. Vologzhanina, Y.N. Bubnov, S.V. Volkov, Y.Z. Voloshin, *Inorg. Chem. Commun.*, 2014, **44**, 134.