SUPPORTING INFORMATION

One-pot synthesis of PEG modified BaLuF₅: Gd/Yb/Er nanoprobes for dual-modal *in vivo* upconversion

luminescent and X-ray bioimaging

Ling Rao,^{*a,b*} Wei Lu,^{*c*} Tianmei Zeng,^{*a*} Zhigao Yi, ^{*a,b*} Haibo Wang, ^{*a,b*} Hongrong Liu^{*a*} and Songjun Zeng^{**a*}

a College of Physics and Information Science and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, Hunan, People's Republic of China. Email: <u>songjunz@hunnu.edu.cn</u> b Faculty of Materials, Optoelectronics and Physics, Key Laboratory of Low-dimensional Materials and Application Technology

(Ministry of Education), Xiangtan University, Xiangtan 411105, People's Republic of China.

c Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong.

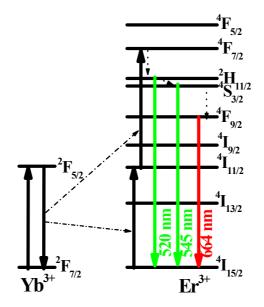


Fig. s1 Simplified energy level diagrams of Yb³⁺/Er³⁺. The green and red light centered at 520/545 and 664 nm, which can be attributed to the electronic transition ${}^{2}\text{H}_{11/2}{}^{/4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$ and ${}^{4}\text{F}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$ of Er³⁺ ions.