Valence tautomerism and dynamic behavior of cobalt complexes with an anthracene-containing dioxolene ligand

Koichi Katayama, Masakazu Hirotsu,* Isamu Kinoshita, and Yoshio Teki*

Division of Molecular Materials Science, Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan) E-mail: <u>mhiro@sci.osaka-cu.ac.jp</u>; <u>teki@sci.osaka-cu.ac.jp</u>

Supplementary Information Data

IR spectra of 1-4, ¹H NMR spectra of 1-4, (i) and H_2L , variable temperature ¹H NMR spectra of 1-4, Eyring plots of 1 and 2, LIVT measurements of complexes 2 and 3, and TRESR spectrum of H_2L are presented as supplementary information.

Figure S1. IR spectra of complexes 1-4 at room temperature.

Figure S2. ¹H NMR spectra (300 MHz) of complexes 1-4 at room temperature in acetonitrile- d_3 .

Figure S3. Temperature dependence of magnetic susceptibilities of complex **2**, the bulk powder sample (\bigcirc), after irradiation with 355 nm light (\square) and 532 nm light (\triangle). The χ_M T values of the thin samples at 5 K before photo-irradiation were corrected by using that of the bulk powder sample at 5 K. The values after photo-irradiation are lower than those of the bulk powder sample above 7 K because the susceptibility data were not corrected for the diamagnetism of the tape.

Figure S4. Temperature dependence of magnetic susceptibilities of complex **3**, the bulk powder sample (\bigcirc), after photo-irradiation 355 nm (\square) and 532 nm (\triangle). The χ_M T values of the thin samples at 5 K before photo-irradiation were corrected by using that of the bulk powder sample at 5 K. The values after photo-irradiation are lower than those of the bulk powder sample above 7 K because the susceptibility data were not corrected for the diamagnetism of the tape.

Figure S5. TRESR spectrum of H_2L at 30 K in a 2-Me-THF glass matrix at 0.5 μ s. "Abs." and "Emi." denote the absorption and emission of microwave. The signals were observed in the range of 250 to 420 mT. The deduced *D* value is about 0.07 cm⁻¹, which is similar to that of anthracene (0.0710 cm⁻¹).

Figure S6. Observed (left) and simulated (middle) signals of 10-H proton of the anthracene ring in variable temperature ¹H NMR spectra of **1** in acetonitrile-*d*₃. Eyring plot of complex **1** (right): $\ln(k/T) = -\Delta H^{\ddagger}/(RT) + \ln(k_{\rm B}/h) + \Delta S^{\ddagger}/R; k, \text{ rate constant; } T, \text{ temperature; } R, \text{ gas constant; } k_{\rm B},$ Boltzmann constant; *h*, Planck constant; ΔH^{\ddagger} , activation enthalpy; ΔS^{\ddagger} , activation entropy.

Figure S7. Observed (left) and simulated (middle) signals of 10-H proton of the anthracene ring in variable temperature ¹H NMR spectra of **2** in acetonitrile-*d*₃. Eyring plot of complex **2** (right): $\ln(k/T) = -\Delta H^{\ddagger}/(RT) + \ln(k_{\rm B}/h) + \Delta S^{\ddagger}/R$; *k*, rate constant; *T*, temperature; *R*, gas constant; *k*_B, Boltzmann constant; *h*, Planck constant; ΔH^{\ddagger} , activation enthalpy; ΔS^{\ddagger} , activation entropy.

Figure S8. Variable temperature ¹H NMR spectra (300 MHz) of complex **3** in acetonitrile- d_3 . Residual solvent signals are marked with an asterisk.

Figure S9. Variable temperature ¹H NMR spectra (300 MHz) of complex 4 in acetonitrile- d_3 . Residual solvent signals are marked with an asterisk.

Figure S10. ¹H NMR spectrum (300 MHz, CDCl₃) of (i).

Figure S11. ¹H NMR spectrum (300 MHz, CDCl₃) of H₂L.