Supplementary info for "Frenkel excitons in a copper azadipyrrin complex"

T. M. McLean, S. G. Telfer, A. S. B. Elliott, K. C. Gordon, M. Lein and M. R. Waterland*

For computational output below the Gaussian log file is available upon request (M.Waterland@massey.ac.nz).

_____ CenterAtomicAtomicCoordinates (Angstroms)NumberNumberTypeXYZ _____

A. Output from UB3LYP/6-31G(d) C-PCM optimised geometry

46	6	0	-3.072214	2.580957	-2.158598
47	1	0	-3.491213	1.901343	-2.895609
48	6	0	-3.113187	3.962278	-2.373604
49	1	0	-3.556596	4.360836	-3.281541
50	6	0	0.954492	2.456853	-4.908655
51	6	0	2.016818	3.125518	-5.551308
52	1	0	2.891216	3.415057	-4.974543
53	6	0	1.970724	3.392195	-6.919482
54	1	0	2.804568	3.899556	-7.396952
55	6	0	0.859743	3.003198	-7.674711
56	1	0	0.822882	3.213280	-8.739972
57	6	0	-0.202452	2.343864	-7.050417
58	1	0	-1.072694	2.044681	-7.628264
59	6	0	-0.157585	2.070168	-5.682647
60	1	0	-0.989590	1.568202	-5.201582
61	6	0	-0.954492	-2.456853	-4.908655
62	6	0	0.157585	-2.070168	-5.682647
63	1	0	0 989590	-1 568202	-5 201582
64	- 6	0	0 202452	-2 343864	-7 050417
65	1	0	1 072694	-2 044681	-7 628264
66	6	0	-0 859743	-3 003198	-7 674711
67	1	0	-0.822882	-3 213280	-8 739972
68	÷	0	-1 970724	-3 392195	-6 919482
69	1	0	-2 804568	-3 899556	-7 396952
70	6	0	-2 016818	-3 125518	-5 551308
70	1	0	-2 891216	-3 /15057	-1 97/5/3
71	I 6	0	-2.091210	-2 926313	-4.9/4343
72	6	0	-2 503332	-2 066573	0.013333
73	1	0	-2.303332	-2.000373	0.995410
74	1 6	0	-2.494000	-0.995822	2 150500
75	0	0	-3.072214	-2.300937	2.130390
70	Ĺ	0	-J.49121J 2 112107	-1.901343	2.09009
70	0	0	-3.11318/	-3.962278	2.3/3604
78	L C	0	-3.556596	-4.360836	3.281341
79	0	0	-2.300/03	-4.02/040	1.4091/1
00	1 C	0	-2.011527	-3.901912	1.000007
81	0	0	-2.026963	-4.316609	0.238284
8∠ 02	L C	0	-1.010831	-4.995867	-0.500148
83	6	0	1.908290	-2.926313	-0.015339
84 05	0	0	2.503332	-2.066573	-0.993418
85	L C	0	2.494000	-0.993822	-0.831062
80	0	0	3.072214	-2.580957	-2.158598
8 /		0	3.491213	-1.901343	-2.895609
88	6	0	3.11318/	-3.962278	-2.3/3604
89		0	3.556596	-4.360836	-3.281541
90	6	0	2.586/65	-4.82/640	-1.4091/1
91		0	2.611527	-5.901912	-1.56855/
92	6	0	2.026963	-4.316609	-0.238284
93		0	1.610831	-4.995867	0.500148
94	6	0	0.954492	-2.456853	4.908655
95	6	0	2.016818	-3.125518	5.551308
96	1	0	2.891216	-3.415057	4.974543
97	6	0	1.9/0/24	-3.392195	6.919482
98 00	Ĺ	U	∠.804568	-3.899556	1.396952
99	6	U	0.859743	-3.003198	/.6/4/11
10U	1	U	0.822882	-3.213280	8.739972
101	6	0	-0.202452	-2.343864	7.050417
102	1	0	-1.072694	-2.044681	7.628264
103	6	0	-0.157585	-2.070168	5.682647
104	1	0	-0.989590	-1.568202	5.201582
105	6	0	-0.954492	2.456853	4.908655
106	6	0	0.157585	2.070168	5.682647

107	1	0	0.989590	1.568202	5.201582
108	6	0	0.202452	2.343864	7.050417
109	1	0	1.072694	2.044681	7.628264
110	6	0	-0.859743	3.003198	7.674711
111	1	0	-0.822882	3.213280	8.739972
112	6	0	-1.970724	3.392195	6.919482
113	1	0	-2.804568	3.899556	7.396952
114	6	0	-2.016818	3.125518	5.551308
115	1	0	-2.891216	3.415057	4.974543

B. Transition Dipoles

Ground	to excited	state	transition	electric	dipole :	moments	(Au):	
	state	Х		Y	Z	Dip.	s.	Osc.
	1	0.319	3 0.00	000 C	0.0000	0.10	20	0.0020
	2	0.000	0 0.4	702 C	0.0000	0.22	11	0.0044
	3	0.000	0.00	000 C	.1685	0.02	84	0.0007
	4	0.264	5 0.00	000 C	0.0000	0.06	99	0.0020
	5	0.000	0 0.40	098 C	0.0000	0.16	80	0.0048
	6	0.000	0 -0.00	091 C	0.0000	0.00	01	0.0000
	7	-0.084	7 0.00	000 C	0.0000	0.00	72	0.0002
	8	0.000	0 -0.69	953 C	0.0000	0.48	34	0.0216
	9	-0.271	2 0.00	000 C	0.0000	0.07	35	0.0033
	10	0.000	0 0.38	817 C	0.0000	0.14	57	0.0066
	11	-0.620	1 0.00	000 C	0.0000	0.38	45	0.0178
	12	0.000	0 -0.69	968 C	0.0000	0.48	56	0.0226
	13	0.173	6 0.00	000 C	0.0000	0.03	01	0.0014
	14	0.000	0.00	000 C	0.0000	0.00	00	0.0000
	15	0.000	0.00	000 1	L.4325	2.05	19	0.1041
	16	2.488	6 0.00	000 0	0.0000	6.19	30	0.3234
	17	0.073	0.00	000 C	0.0000	0.00	53	0.0003
	18	0.000	0 -2.98	B27 C	0.0000	8.89	66	0.4868
	19	0.000	0.00	000 1	L.3621	1.85	53	0.1043
	20	-0.000	1 3.3'	766 0	0.0000	11.40	17	0.6429
	21	0.000	0.00	000 C	0.0000	0.00	00	0.0000
	22	0.270	5 0.00	000 C	0.0000	0.07	32	0.0043
	23	0.000	0.00	- C 00C	0.6878	0.47	31	0.0290
	24	-0.376	9 -0.00	001 C	0.0000	0.14	20	0.0093

C. Output from TD-UB3LYP/6-31G(d) C-PCM excited transition energies and configurations

Excited	Sta	te	15:	2.455-B1	2.0709	eV	598.69	nm	f=0.1041
<s**2>=1.</s**2>	.257								
245A	->	2527	A	0.15008					
248A	->	2517	A	-0.21273					
225B	->	2501	3	0.26488					
230B	->	2501	3	-0.24587					
235B	->	2501	3	0.17710					
244B	->	251H	3	0.17431					
245B	->	2501	3	0.80861					
245B	->	2521	3	0.14610					
Excited	Sta	te	16:	2.033-ВЗ	2.1316	еV	581.66	nm	f=0.3234
<s**2>=0.</s**2>	.783								

249A -> 251A 250A -> 252A 248B -> 251B 249B -> 250B 249B -> 252B	-0.39850 -0.51396 -0.33423 0.11830 0.65595			
Excited State 18: <s**2>=1.821 246A -> 251A 247A -> 252A 249A -> 252A 250A -> 251A 246B -> 251B 247B -> 252B 248B -> 252B 248B -> 252B 249B -> 251B</s**2>	2.878-B2 -0.32797 0.30416 0.36565 0.28519 0.42267 0.33326 -0.42765 0.24493	2.2333 eV	555.17 nm	f=0.4868
Excited State 19: <s**2>=1.978 245A -> 252A 248A -> 251A 225B -> 250B 230B -> 250B 235B -> 250B 244B -> 251B 245B -> 250B 245B -> 250B</s**2>	2.985-B1 -0.42110 0.67331 0.11803 -0.15332 0.12396 -0.29925 0.27445 -0.30307	2.2953 eV	540.16 nm	f=0.1043
Excited State 20: <s**2>=1.526 246A -> 251A 247A -> 252A 249A -> 252A 250A -> 251A 246B -> 251B 247B -> 250B 247B -> 250B 247B -> 252B 248B -> 250B 248B -> 252B 248B -> 252B 249B -> 251B</s**2>	2.666-B2 -0.41051 0.37388 -0.36437 -0.28009 0.29213 -0.26727 0.22087 0.12174 0.39165 -0.27563	2.3017 eV	538.67 nm	f=0.6429

D. Optimised (dimensionless) Mode Displacements (D) and Reorganisation Energies (A) from Wavepacket Modelling

Exciton State	1	
ν / cm ⁻¹	Δ	λ / cm ⁻¹
1601	0.35	98.0
1509	0.4	120.7
1486	0.22	35.9
1475	0.175	22.5
1413	0.55	213.7
1376	0.25	43
1322	0.85	477.5
1305	0.35	79.9
1275	0.35	78.0
1223	0.25	38.2
1130	0.04	0.9

1059	0.12	7.6
1031	0.275	38.9
1009	0.4	80.72
998	0.375	70.1
984	0	0
936	0.5	117
833	0.75	234.2
772	0.3	34.7
763	0.35	46.7
587	0.99	287.6
531	0.75	149.3
511	0.2	10.2
460	0.6	82.8
412	0.2	8.3

Exciton State	2 (X ₂)	
ν / cm ⁻¹	Δ	λ / cm ⁻¹
1601	0.6	288.2
1509	0.38	108.9
1486	0.27	54.1
1475	0.225	37.3
1413	0.45	143.0
1376	0.35	84.2
1322	0.75	371.8
1305	0.25	40.7
1275	0.37	87.2
1223	0.35	74.9
1130	0.425	102.0
1059	0.25	33.0
1031	0.25	32.2
1009	0.35	61.8
998	0.4	79.84
984	0.5	123
936	0.5	117
833	0.55	125
772	0	0
763	0	0
587	0.375	41.2
531	0.075	1.49
511	0	0
460	0	0
412	0	0

E. Selected Normal Modes(Gaussian log file is available upon request).

587 cm⁻¹

833 cm⁻¹

936 cm⁻¹

1305 cm⁻¹

1376 cm⁻¹

1413 cm⁻¹

1601 cm⁻¹

E. Selected Kohn-Sham Orbitals

ΗΟΜΟ-5(α)

HOMO-5(β)

HOMO-4(α)

ΗΟΜΟ-3(β)

ΗΟΜΟ-1(α)

ΗΟΜΟ-3(α)

ΗΟΜΟ-4(β)

ΗΟΜΟ-2(β)

HOMO-2(α)

ΗΟΜΟ-1(β) ΗΟΜΟ(α)

LUMO(α)

LUMO+1(α)

LUMO(β)

LUMO+1(β) LUMO+2(β)