Supplementary Information

Mechanistic insights into electrocatalytic CO₂ reduction within [Ru^{II}(tpy)(NN)X]ⁿ⁺ architectures

Travis A. White, Somnath Maji, and Sascha Ott*

Department of Chemistry, Ångström Laboratory, Uppsala Universitet Box 523, 75120 Uppsala, Sweden. E-mail: <u>sascha.ott@kemi.uu.se</u>

Content	Page
Cover Page	S 1
Table of Contents	S2
Figures S1-S3. ¹ H-NMR spectra	S3-S4
Figure S4. Electronic absorption spectra	S5
Table S1. Electronic absorption data	S5
Figure S5. Simulated and experimental CVs	S 6
Figures S6-S11. CVs of anodic and cathodic regions under argon	S7-S9
Figures S12-S15. CVs of scan rate variation throughout cathodic region	S10-S13
Figure S16. Gas chromatograms from bulk electrolysis experiment.	S14
Figures S17-S21. CVs of cathodic region under argon and CO ₂	S15-S19

Table of Contents

Figure S1. ¹H-NMR spectrum (400 MHz, CD₃CN) of $[Ru(tpy)(4,4'-Me_2bpy)NCCH_3](PF_6)_2$ at 25°C.

Figure S2. ¹H-NMR spectrum (400 MHz, CD₃CN) of $[Ru(tpy)(4,4'-{}^{t}Bu_{2}bpy)NCCH_{3}](PF_{6})_{2}$ at 25°C.

Figure S3. ¹H-NMR spectrum (400 MHz, CD₃CN) of $[Ru(tpy)((4,4'-MeO)_2bpy)NCCH_3](PF_6)_2$ at 25°C.

Figure S4. Electronic absorption spectra of $[Ru^{II}(tpy)(4,4'-Me_2bpy)NCCH_3]^{2+}$ (--), $[Ru^{II}(tpy)(4,4'-{}^{t}Bu_2bpy)NCCH_3]^{2+}$ (--), and $[Ru(tpy)((4,4'-MeO)_2-bpy)NCCH_3]^{2+}$ (--) measured at room temperature in CH₃CN.

Complex	λ_{abs} (nm)	$\epsilon \ge 10^{-4} (M^{-1} cm^{-1})$
$[Ru^{II}(tpy)(4,4'-Me_2bpy)NCCH_3]^{2+}$	280	4.42
	307	4.23
	455	1.12
$[Ru^{II}(tpy)(4,4'-{}^{t}Bu_{2}bpy)NCCH_{3}]^{2+}$	283	4.49
	307	4.38
	455	1.18
$[Ru(tpy)((4,4'-MeO)_2bpy)NCCH_3]^{2+}$	269	4.21
	309	4.11
	457	1.03

 Table S1. Electronic Absorption Data^a

^a Measured in CH₃CN solution at room temperature.

Figure S5. Experimental (solid black lines) and simulated (dotted green lines) cyclic voltammograms at 25 mV/s (**A**), 50 mV/s (**B**), 100 mV/s (**C**), 200 mV/s (**D**), 500 mV/s (**E**), 1000 mV/s (**F**), and 2000 mV/s (**G**) isolating the first redox couple upon cathodic scanning to calculate the rate constant for Cl⁻ dissociation (k_{-Cl}) for [Ru^{II}(tpy)(4,4'-(MeO)₂bpy)Cl]⁺. Parameters used to fit the simulated data to the experimental data were as follows: diffusion = Semi-Infinite 2D; geometry = disk; radius = 0.15 cm; $\alpha = 0.5$; $k_s = 10$ cm/s; $E^0(Ru^{II/I}-Cl) = -1.73$ V; $E^0(Ru^{II/I}-NCCH_3) = -1.53$ V; $Ru^{I}-Cl \rightarrow Ru^{I}-NCCH_3 + Cl$ ($K_{eq} = 6.2$, $k_f = 0.6$ s⁻¹, $k_b = 0.09677$ s⁻¹); $Ru^{I}-NCCH_3 \rightarrow Ru^{I}$ ($K_{eq} = 329$, $k_f = 0.1452$ s⁻¹, $k_b = 0.0004406$ s⁻¹); $D(Ru^{II}-Cl) = 1.2 \times 10^{-5}$ cm²/s; $D(Ru^{I}-Cl) = 6.6 \times 10^{-6}$ cm²/s; $D(Ru^{II}-NCCH_3) = 8.5 \times 10^{-5}$ cm²/s; $D(Ru^{I}-NCCH_3) = 7.6 \times 10^{-6}$ cm²/s; $D(Cl) = 2.5 \times 10^{-6}$ cm²/s; $D(Ru^{I}) = 1 \times 10^{-5}$ cm²/s.

Figure S6. Cyclic voltammograms of $[Ru^{II}(tpy)(4,4'-(MeO)_2bpy)Cl]^+$ (top) and $[Ru^{II}(tpy)(4,4'-(MeO)_2bpy)NCCH_3]^{2+}$ (bottom) in Ar-saturated CH₃CN solution using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.

Figure S7. Cyclic voltammograms of $[Ru^{II}(tpy)(4,4'-{}^{t}Bu_{2}bpy)CI]^{+}$ (top) and $[Ru^{II}(tpy)(4,4'-{}^{t}Bu_{2}bpy)NCCH_{3}]^{2+}$ (bottom) in Ar-saturated CH₃CN solution using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.

Figure S8. Cyclic voltammograms of $[Ru^{II}(tpy)(4,4'-Me_2bpy)CI]^+$ (top) and $[Ru^{II}(tpy)(4,4'-Me_2bpy)NCCH_3]^{2+}$ (bottom) in Ar-saturated CH₃CN solution using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.

Figure S9. Cyclic voltammograms of $[Ru^{II}(tpy)(phen)Cl]^+$ (top) and $[Ru^{II}(tpy)(phen)NCCH_3]^{2+}$ (bottom) in Ar-saturated CH₃CN solution using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.

Figure S10. Cyclic voltammograms of $[Ru^{II}(tpy)(bpm)Cl]^+$ (top) and $[Ru^{II}(tpy)(bpm)NCCH_3]^{2+}$ (bottom) in Ar-saturated CH₃CN solution using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.

Figure S11. Cyclic voltammograms of $[Ru^{II}(tpy)(dppz)Cl]^+$ (top) and $[Ru^{II}(tpy)(dppz)NCCH_3]^{2+}$ (bottom) in Ar-saturated CH₃CN solution using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.

Figure S12. Scan rate variation of the 1st reduction within $[Ru^{II}(tpy)(^{t}Bu_{2}bpy)Cl]^{+}(\mathbf{A})$, $[Ru^{II}(tpy)(phen)Cl]^{+}(\mathbf{B})$, and $[Ru^{II}(tpy)(dppz)Cl]^{+}(\mathbf{C})$.

Figure S13. Scan rate variation of the 1st reduction within $[Ru^{II}(tpy)((MeO)_2bpy)NCCH_3]^{2+}$ (**A**), $[Ru^{II}(tpy)(^tBu_2bpy)NCCH_3]^{2+}$ (**B**), $[Ru^{II}(tpy)(Me_2bpy)NCCH_3]^{2+}$ (**C**), $[Ru^{II}(tpy)(phen)NCCH_3]^{2+}$ (**D**), $[Ru^{II}(tpy)(bpm)NCCH_3]^{2+}$ (**E**), and $[Ru^{II}(tpy)(dppz)NCCH_3]^{2+}$ (**F**).

Figure S14. Scan rate variation of the 2nd reduction within $[Ru^{II}(tpy)(^{t}Bu_{2}bpy)Cl]^{+}(\mathbf{A})$, $[Ru^{II}(tpy)(phen)Cl]^{+}(\mathbf{B})$, and $[Ru^{II}(tpy)(dppz)Cl]^{+}(\mathbf{C})$.

Figure S15. Scan rate variation of the 2nd reduction within $[Ru^{II}(tpy)((MeO)_2bpy)NCCH_3]^{2+}$ (**A**), $[Ru^{II}(tpy)(^{t}Bu_2bpy)NCCH_3]^{2+}$ (**B**), $[Ru^{II}(tpy)(Me_2bpy)NCCH_3]^{2+}$ (**C**), $[Ru^{II}(tpy)(phen)NCCH_3]^{2+}$ (**D**), $[Ru^{II}(tpy)(bpm)NCCH_3]^{2+}$ (**E**), and $[Ru^{II}(tpy)(dppz)NCCH_3]^{2+}$ (**F**).

Figure S16. Gas chromatograms depicting a 250 μ L injection of the headspace after 10 min bulk electrolysis of 1mM **1-CH₃CN** under a CO₂-saturated CH₃CN solution (**A**), comparison between injections of air, CO, and the bulk electrolysis products (**B**), and comparison between 50 μ L injection of reference gas samples (**C**).

Figure S16. Cyclic voltammograms of $[Ru^{II}(tpy)(4,4'-{}^{t}Bu_{2}bpy)Cl]^{+}(A)$ and $[Ru^{II}(tpy)(4,4'-{}^{t}Bu_{2}bpy)NCCH_{3}]^{2+}(B)$ in Ar-saturated (solid line) and CO₂-saturated (dashed line) CH₃CN solutions using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s. Inset: Isolation of 1st reduction process under Ar (solid) and CO₂ (dashed) atmospheres.

Figure S17. Cyclic voltammograms of $[Ru^{II}(tpy)(4,4'-Me_2bpy)Cl]^+$ (**A**) and $[Ru^{II}(tpy)(4,4'-Me_2bpy)NCCH_3]^{2+}$ (**B**) in Ar-saturated (solid line) and CO₂-saturated (dashed line) CH₃CN solutions using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.

Figure S18. Cyclic voltammograms of $[Ru^{II}(tpy)(phen)Cl]^+$ (**A**) and $[Ru^{II}(tpy)(phen)NCCH_3]^{2+}$ (**B**) in Ar-saturated (solid line) and CO₂-saturated (dashed line) CH₃CN solutions using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s. Inset: Isolation of 1st reduction process under Ar (solid) and CO₂ (dashed) atmospheres.

Figure S19. Cyclic voltammograms of $[Ru^{II}(tpy)(bpm)Cl]^+$ (**A**) and $[Ru^{II}(tpy)(bpm)NCCH_3]^{2+}$ (**B**) in Ar-saturated (solid line) and CO₂-saturated (dashed line) CH₃CN solutions using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.

Figure S20. Cyclic voltammograms of $[Ru^{II}(tpy)(dppz)Cl]^+$ (**A**) and $[Ru^{II}(tpy)(dppz)NCCH_3]^{2+}$ (**B**) in Ar-saturated (solid line) and CO₂-saturated (dashed line) CH₃CN solutions using 0.1 M Bu₄NPF₆ supporting electrolyte at v = 200 mV/s.